

systemd for Linux
SysAdmins

All You Need to Know About
the systemd Suite for

Linux Users

David Both

systemd for Linux SysAdmins: All You Need to Know About the systemd

Suite for Linux Users

ISBN-13 (pbk): 979-8-8688-1327-6		 ISBN-13 (electronic): 979-8-8688-1328-3
https://doi.org/10.1007/979-8-8688-1328-3

Copyright © 2025 by David Both

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Editorial Project Manager: Jacob Shmulewitz

Cover image designed by David Both

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
Delaware LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

David Both
Raleigh, NC, USA

https://doi.org/10.1007/979-8-8688-1328-3

For Alice

v

Table of Contents

About the Author���xv

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

Chapter 1: �Learning to Love systemd��1

Objectives��1

Overview��2

Linux Boot��2

systemd Controversy���3

Why I Prefer SystemV���4

Why I Prefer systemd���5

The Real Issue��5

Replacing SystemV���6

systemd Tasks��7

More Data for the Admin��11

systemd Standardizes Configuration���13

Architecture���13

systemd As PID 1���14

Preparation��20

Summary���21

Exercises��22

https://doi.org/10.1007/979-8-8688-1328-3_1
https://doi.org/10.1007/979-8-8688-1328-3_1
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec14
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec15
https://doi.org/10.1007/979-8-8688-1328-3_1#Sec16

vi

Chapter 2: �Linux Boot and Startup��23

Objectives��23

Overview��24

Hardware Boot���25

The Boot Sector��26

Linux Boot��28

GRUB��28

The GUID Partition Table���29

The Kernel��33

Linux Startup��34

systemd��36

Graphical Login��46

Display Manager���47

Window Manager��48

How Do I Deal with All These Choices?��50

Console Login���57

Virtual Consoles��59

How Logins Work���61

CLI Login Screen���63

GUI Login Screen��64

Summary���65

Exercises��66

Chapter 3: �Understanding Linux Startup with systemd�����������������������67

Objectives��67

Overview��68

Exploring Linux Startup with systemd���68

Targets���73

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_2
https://doi.org/10.1007/979-8-8688-1328-3_2
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec14
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec15
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec16
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec17
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec18
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec19
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec21
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec22
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec23
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec24
https://doi.org/10.1007/979-8-8688-1328-3_2#Sec25
https://doi.org/10.1007/979-8-8688-1328-3_3
https://doi.org/10.1007/979-8-8688-1328-3_3
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec4

vii

Exploring the Current Target���76

Switching to a Different Target���78

Changing the Default Target���79

Summary���85

Exercises��85

Chapter 4: �How to Manage Startup Using systemd�����������������������������87

Objectives��87

Overview��88

Preparation��88

The Program��89

The Service Unit���90

Creating the Service Unit��93

Start the Service���96

Reboot—Finally��104

Changing the Sequence���106

Ensure a Service Starts After the Network Is Running���������������������������������111

Summary���114

Exercises��115

Chapter 5: �Manage systemd Units with systemctl����������������������������117

Objectives��117

Overview��117

Preparation��118

systemd Suite��118

Practical Structure��119

systemctl��121

Service Units��128

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_3#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_3#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_4
https://doi.org/10.1007/979-8-8688-1328-3_4
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_4#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_5
https://doi.org/10.1007/979-8-8688-1328-3_5
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec7

viii

Mounts the Old Way��133

Creating a Mount Unit���139

Summary���142

Exercises��142

Chapter 6: �Control Your Computer Time and Date with systemd�������145

Objectives��145

Overview��146

Why Time Is Important to Computers���147

Multiple Times��147

NTP��148

The NTP Server Hierarchy��149

NTP Implementation Options��149

NTP Client Configuration��151

NTP Server Pools��153

Chrony��154

Using chronyc from the Command Line���155

Chronyc As an Interactive Tool��162

systemd-timesync���164

Configure systemd-timesyncd��169

Start timesyncd��171

Set the Hardware Clock��172

Do You Really Need RTC?���175

Summary���176

Exercises��177

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_5#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_5#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_6
https://doi.org/10.1007/979-8-8688-1328-3_6
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec14
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec15
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec16
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec17
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec18
https://doi.org/10.1007/979-8-8688-1328-3_6#Sec19

ix

Chapter 7: �Analyzing systemd Calendar and Time Spans�����������������179

Objectives��179

Overview��180

Definitions��180

Absolute Timestamp���180

Accuracy���181

Calendar Event���181

Time Span���182

Calendar Event Expressions���182

Exploring systemd Time Syntax��183

Summary���193

Exercises��193

Chapter 8: �Using systemd Timers��195

Objectives��195

Overview��195

System Maintenance Timers��196

Creating a Timer���202

Timer Accuracy��207

Timer Types��210

OnCalendar Event Expressions��212

Superfluous Timers��214

Summary���215

Exercises��216

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_7
https://doi.org/10.1007/979-8-8688-1328-3_7
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_7#Sec14
https://doi.org/10.1007/979-8-8688-1328-3_8
https://doi.org/10.1007/979-8-8688-1328-3_8
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_8#Sec10

x

Chapter 9: �Using systemd Journals���219

Objectives��219

Overview��219

The Journal��221

The systemd Journal Service���224

Configuration���225

About that Binary Data Format…��226

The journalctl Command��229

Commonly Used Options��238

Other Interesting Options���240

Journal Files���242

Adding Your Own Journal Entries���243

Journal Storage Usage���244

Journal File Rotation��246

Summary���253

Exercises��253

Chapter 10: �Managing the Firewall with firewalld����������������������������255

Objectives��255

Introduction��256

Ports���256

Firewall Rules��259

Firewall Tools���261

Block (Almost) Everything��262

Crunchy on the Outside��263

firewalld���263

firewalld Zones���264

Using --reload���288

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_9
https://doi.org/10.1007/979-8-8688-1328-3_9
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec14
https://doi.org/10.1007/979-8-8688-1328-3_9#Sec15
https://doi.org/10.1007/979-8-8688-1328-3_10
https://doi.org/10.1007/979-8-8688-1328-3_10
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec16

xi

Zone Files���289

Panic Mode���293

firewall-config GUI��295

nftables��295

Outbound Blocking���297

Fail2Ban���298

Cleanup��302

Summary���302

Exercises��303

Chapter 11: �Resource Management with cgroups����������������������������305

Objectives��305

Introduction��305

Using cgroups for Process Management���306

Exploring the Cgroup Hierarchy���311

Managing cgroups with systemd���316

Summary���317

Exercises��318

Chapter 12: �Using systemd-resolved Name Service��������������������������319

Objectives��319

Introduction��320

How a Name Search Works��320

resolv.conf��322

Historical Usage���323

Current Usage���324

Name Service Strategies���326

The /etc/hosts File��326

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_10#Sec17
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec19
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec20
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec21
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec22
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec23
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec24
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec25
https://doi.org/10.1007/979-8-8688-1328-3_10#Sec26
https://doi.org/10.1007/979-8-8688-1328-3_11
https://doi.org/10.1007/979-8-8688-1328-3_11
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_11#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_12
https://doi.org/10.1007/979-8-8688-1328-3_12
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec8

xii

mDNS���329

nss-DNS��337

systemd-resolved.service��343

Fedora Name Resolution Fails When Using systemd-resolved��������������������������345

Determining the Problem���346

Resolving the Problem��349

Concluding Thoughts About nsswitch���355

Summary���356

Exercises��356

Chapter 13: �Replacing rc.local in systemd��357

Objectives��357

Introduction��357

Boot vs. Startup��358

Local Startup��359

Create the Executable File��359

Create the systemd Service���361

Enable the New Service���363

Revise mystartup.sh���364

Final Test��365

A Temporary Option��367

Cleanup��368

Summary���368

Exercises��368

Chapter 14: �Getting More Out of the Journal�������������������������������������371

Objectives��371

Introduction��371

Options to Narrow Search Results���372

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_12#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec16
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec17
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec18
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec19
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec20
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec21
https://doi.org/10.1007/979-8-8688-1328-3_12#Sec22
https://doi.org/10.1007/979-8-8688-1328-3_13
https://doi.org/10.1007/979-8-8688-1328-3_13
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_13#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_14
https://doi.org/10.1007/979-8-8688-1328-3_14
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec3

xiii

A Troubleshooting Example��377

Determining the Problem���377

First Solution��380

The Better Solution���383

Summary���385

Exercises��386

Chapter 15: �Analyzing systemd Startup and Configuration��������������387

Objectives��387

Overview��388

Linux Startup��388

Basic Analysis���389

The Blame Game��390

Critical Chain��391

System State��396

Analytic Graphs��399

Conditionals��401

Listing Configuration Files���402

Unit File Verification���405

Security��405

Summary���407

Exercises��408

Chapter 16: Why I Support the systemd Plan to Take Over
the World���409

Introduction��409

More Data for the Admin��411

systemd Standardizes Configuration���416

Sometimes, the Pain��416

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_14#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_14#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_15
https://doi.org/10.1007/979-8-8688-1328-3_15
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec4
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec12
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec13
https://doi.org/10.1007/979-8-8688-1328-3_15#Sec14
https://doi.org/10.1007/979-8-8688-1328-3_16
https://doi.org/10.1007/979-8-8688-1328-3_16
https://doi.org/10.1007/979-8-8688-1328-3_16
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec1
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec2
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec3
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec4

xiv

Five Reasons SysAdmins Love systemd��417

Boot Management��418

Log Reviews���419

Service Management���420

Timers���422

Targets��423

Taking Control with systemd��423

Final Exercise���424

�Appendix A: systemd Resources���425

Index��429

Table of Contents

https://doi.org/10.1007/979-8-8688-1328-3_16#Sec5
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec6
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec7
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec8
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec9
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec10
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec11
https://doi.org/10.1007/979-8-8688-1328-3_16#Sec12

xv

David Both, SCSA, RHCT, RHCE, is an open

source software and Linux advocate, trainer,

writer, and speaker. He has been working with

Linux and open source software since 1996

and has been working with computers for

over 50 years. He is a strong proponent of and

evangelist for the “Linux Philosophy for System

Administrators.”

He has taught RHCE classes for Red Hat

and has worked at MCI Worldcom, Cisco, and

the State of North Carolina. He has taught

classes on Linux ranging from Lunch'n'Learns

to full five-day courses.

David has written articles for magazines including Linux Magazine,

Linux Journal, and OS/2 Magazine back when there was such a thing.

David wrote for Opensource.com (OSDC) before it was closed by Red

Hat. He now writes for Both.org while working with a core group of OSDC

alumni to recreate the community that made OSDC so successful.

David has published eight previous books with Apress, including

The Linux Philosophy for SysAdmins, August 2018; a three-volume self-

study training course, Using and Administering Linux – Zero to SysAdmin,

released in December 2019; and Linux for Small Business Owners, released

in late 2022. The second edition of Using and Administering Linux – Zero to

SysAdmin was released in 2023.

He has found some interesting and unusual ways of problem-solving,

including sitting on one computer on which he was working.

About the Author

xvii

About the Technical Reviewer

Seth Kenlon is a UNIX and Linux geek,

open source enthusiast, and tabletop gamer.

Between gigs in the film industry and the

tech industry (not necessarily exclusive of

one another), he designs games and hacks

on Java and Lua. Visit gopher://ada.info-

underground.net:70/1/klaatu or

http://seth.kenlon.com for more

information.

http://seth.kenlon.com

xix

First, I need to say a special thanks to my awesome wife, Alice, who has

been my head cheerleader. I could not have done this without you, my best

friend, my sweetie.

I’d like to thank my editor, James Robinson-Prior, for seeing the need

for this book. I’d also like to thank Shobana Srinivasan, Gryffin Winkler,

and Jacob Shmulewitz for their efforts in making this book a reality.

I’d also like to thank all the people in production—the ones who take

files full of words and produce the finished book in multiple formats. You

always make my words look good.

Acknowledgments

xxi

Introduction

Explore the world of systemd, the modern but controversial replacement

for init and SystemV init scripts. systemd can evoke a wide range of

reactions from SysAdmins and others responsible for keeping Linux

systems up and running.

The fact that systemd is taking over so many system management tasks

in modern Linux systems has engendered pushback and discord among

some groups of developers and SysAdmins. Yet that wide reach of systemd

is the very reason it’s so popular with others.

This book will help you to understand systemd’s strengths and

weaknesses and why there’s no truth in the myth that systemd is a

monolithic monstrosity. systemd is the mother of all processes and is also

responsible for bringing the Linux host up to a state in which productive

work can be done. You’ll learn about the functions assumed by systemd,

which is far more extensive than the old init program, and how it manages

many aspects of a running Linux host, including

•	 Mounting filesystems

•	 Managing hardware

•	 Creating new systemd services and understanding

existing ones

•	 Creating timers that trigger system maintenance events

•	 Starting and managing the system services that are

required to have a productive Linux host

xxii

•	 Using the systemd journal to access critical

performance and problem-solving information

•	 Why the systemd plan to take over the world is actually

a good thing

This book introduces you to systemd with an overview and exploration

of the controversy surrounding it. We’ll cover systemd’s major components

and how they can provide insight into Linux startup, as well as how to

manage the tools and services required to operate and maintain a running

Linux computer.

This book will help demystify systemd. You’ll learn what it is, what

it does, and how to use it to keep Linux systems up and running. You’ll

explore the major functional components of systemd with real-world

examples to illustrate their typical usage. You’ll also learn pragmatic work-

arounds, hints, and tricks to minimize the issues that systemd does have

and ensure you have maximized your system’s functionality and security.

You’ll learn to manage each of the major functional components of

systemd and learn from real-world examples to illustrate their typical

usage by SysAdmins.

This book is intended for Linux system administrators (SysAdmins)

who need to or are already in the process of switching from SystemV to

systemd. It’s also intended for SysAdmins with more systemd experience

but who want to improve their knowledge and skills with systemd.

This book is not for anyone who is not a SysAdmin. If you’re only

interested in getting your work done and have no interest in what’s

happening under the covers, if you call upon others to fix your computer

when something goes awry, this is not the book for you.

Introduction

1© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_1

CHAPTER 1

Learning to Love
systemd

�Objectives
In this chapter, you will learn

•	 To differentiate the stages of the Linux boot process

•	 About the controversy surrounding SystemV

vs. systemd

•	 To list the functions of systemd

•	 Why systemd is an improvement over SystemV startup

and init services

•	 How the SystemV runlevels compare to systemd targets

•	 The functions of systemd during boot

•	 The functions of systemd while the system is up

and running

•	 To list the dependencies of systemd targets

•	 To prepare for the experiments that start in Chapter 2

https://doi.org/10.1007/979-8-8688-1328-3_1#DOI
https://doi.org/10.1007/979-8-8688-1328-3_2

2

�Overview
systemd—yes, all lowercase, even at the beginning of a sentence—is the

modern replacement for init and SystemV init scripts. It is also much more.

Like most SysAdmins, when I think of the init program and SystemV,

I think of Linux startup and shutdown and not really much else, such as

managing services once they are up and running. Like init, systemd is the

mother of all processes, and it is responsible for bringing the Linux host

up to a state in which productive work can be done. Some of the functions

assumed by systemd, which is far more extensive than the old init

program, are to manage many aspects of a running Linux host, including

mounting filesystems, managing hardware, handling timers, and starting

and managing the system services that are required to have a productive

Linux host.

This chapter provides a brief look at systemd, its features, and

functions.

�Linux Boot
The complete process that takes a Linux host from an off state to a running

state is complex, but it is open and knowable. Before getting into the

details, I’ll give a quick overview from when the host hardware is turned

on until the system is ready for a user to log in. Most of the time, “the boot

process” is discussed as a single entity, but that is not accurate. There are,

in fact, three major parts to the full boot and startup process:

•	 Hardware boot: UEFI1 initializes the system hardware.

•	 Linux boot: Loads the Linux kernel and then systemd.

1 UEFI is the Unified Extensible Firmware Interface. It’s responsible for initializing
the system hardware, locating and loading a boot record, and turning control over
to the code in the boot record.

Chapter 1 Learning to Love systemd

3

•	 Linux startup: systemd prepares the host for

productive work.

The Linux startup sequence begins after the kernel has loaded either

init or systemd, depending upon whether the distribution uses the

SystemV or systemd startup, respectively. The init and systemd programs

start and manage all the other processes and are both known as the

“mother of all processes” on their respective systems.

It’s important to separate the hardware (BIOS/UEFI) boot from the

Linux boot from the Linux startup and to explicitly define the demarcation

points between them. Understanding these differences and what part

each plays in getting a Linux system to a state where it can be productive

makes it possible to manage these processes and better determine where a

problem is occurring during what most people refer to as “boot.”

The startup process follows the three-step boot process and brings

the Linux computer up to an operational state in which it is usable for

productive work. The startup process begins when the kernel transfers

control of the host to systemd.

�systemd Controversy
systemd can evoke a wide range of reactions from SysAdmins and

others responsible for keeping Linux systems up and running. The fact

that systemd has taken over so many tasks in many Linux systems has

engendered pushback and discord among certain groups of developers

and SysAdmins.

SystemV and systemd are two different methods of performing the

Linux startup sequence. Although most modern Linux distributions use the

newer systemd for startup, shutdown, and process management, there are

still some that do not. One reason is that some distribution maintainers and

some SysAdmins prefer the older SystemV method over the newer systemd.

I think both have advantages.

Chapter 1 Learning to Love systemd

4

�Why I Prefer SystemV
I prefer SystemV because it is more traditional. Startup is accomplished

using Bash scripts. After the kernel starts the init program, which is a

compiled binary, the init program launches the rc.sysinit script, which

performs many system initialization tasks. After rc.sysinit completes, init

launches the /etc/rc.d/rc script, which in turn starts the various services

defined by the SystemV start scripts in the /etc/rc.d/rcX.d, where “X” is the

number of the runlevel being started.

Except for the init program itself, all these programs are plain text and

easily readable scripts. It is possible to read through these scripts and learn

exactly what is taking place during the entire startup process, but I don’t

think many SysAdmins actually do that. Each start script is numbered so

that it starts its intended service in a specific sequence. Services are started

serially, and only one service starts at a time.

systemd, developed by Red Hat’s Lennart Poettering and Kay Sievers,

is a complex system of large, compiled binary executables that are not

understandable without access to the source code. It is open source,

so “access to the source code” isn’t hard, just less convenient. systemd

appears to represent a significant refutation of multiple tenets of the

Linux philosophy. As a binary, systemd is not directly open for the

SysAdmin to view or make easy changes. systemd tries to do everything,

such as managing running services while providing significantly more

status information than SystemV. It also manages hardware, processes,

and groups of processes, filesystem mounts, and much more. systemd is

present in almost every aspect of the modern Linux host, making it the

one-stop tool for system management. All of this is a clear violation of the

tenets that programs should be small and that each program should do

one thing and do it well.

Chapter 1 Learning to Love systemd

5

�Why I Prefer systemd
I prefer systemd as my startup mechanism because it starts as many

services as possible in parallel, depending upon the current stage in the

startup process. This speeds the overall startup and gets the host system to

a login screen faster than SystemV. For example, my primary workstation

has 32 CPUs at 3.5GHz and loads faster than some of my other systems

with fewer CPUs but faster clock speeds.

systemd manages almost every aspect of a running Linux system. It

can manage running services while providing significantly more status

information than SystemV. It also manages hardware, processes and

groups of processes, filesystem mounts, and much more. systemd is

present in almost every aspect of the modern Linux operating system,

making it the one-stop tool for system management.

The systemd tools are compiled binaries, but the code is open source.

The tool suite is open because all the configuration files are ASCII text

files. Startup configuration can be modified through various GUI and

command-line tools, as well as adding or modifying various configuration

files to suit the needs of the specific local computing environment.

�The Real Issue
Did you think I couldn’t like both startup systems? I do, and I can work

with either one although I seldom encounter a SystemV distribution

anymore.

In my opinion, the real issue and the root cause of most of the

controversy between SystemV and systemd is that there is no choice on

the SysAdmin level. The choice of whether to use SystemV or systemd has

already been made by the developers, maintainers, and packagers of the

various distributions—but with good reason. Scooping out and replacing

an init system, by its extreme, invasive nature, brings with it consequences

that would be hard to tackle outside the distribution design process.

Chapter 1 Learning to Love systemd

6

Despite the fact that this choice is made for me, my Linux hosts boot

up and work, which is what I usually care the most about. As an end user

and even as a SysAdmin, my primary concern is whether I can get my work

done, work such as writing my books and this chapter, installing updates,

and writing scripts to automate everything. So long as I can do my work, I

don’t really care about the start sequence used by my distro.

I do care when there is a problem during startup or service

management. Regardless of which startup system is used on a host, I know

enough to follow the sequence of events to find the failure and fix it.

�Replacing SystemV
There have been previous attempts at replacing SystemV with something

a bit more modern. For about two releases, Fedora used a thing called

Upstart to replace the aging SystemV, but it did not replace init and

provided no noticeable changes. Because Upstart provided no significant

changes to the issues surrounding SystemV, efforts in this direction were

quickly dropped in favor of systemd.

Despite the fact that most Linux developers agree that replacing the old

SystemV startup is a good idea, many developers and SysAdmins dislike

systemd for that. Rather than rehash all the so-called issues that people

have—or had—with systemd, I will refer you to two good, if somewhat old,

articles that should cover almost everything. Linus Torvalds, the creator

of the Linux kernel, seems disinterested. In a 2014 ZDNet article, “Linus

Torvalds and others on Linux’s systemd,” Linus is clear about his feelings.

I don’t actually have any particularly strong opinions on sys-
temd itself. I’ve had issues with some of the core developers that
I think are much too cavalier about bugs and compatibility,
and I think some of the design details are insane (I dislike the
binary logs, for example), but those are details, not big issues.

—Linux Torvalds, ZDNet, 2014

Chapter 1 Learning to Love systemd

7

In case you don’t know much about Linus, I can tell you that if he does

not like something, he is very outspoken, explicit, and quite clear about

that dislike. He has become more socially acceptable in his manner of

addressing his dislike about things.

In 2013, Poettering wrote a long blog post in which he debunks the

myths about systemd while providing insight into some of the reasons for

creating it. This is a very good read, and I highly recommend it.

�systemd Tasks
Depending upon the options used during the compile process (which are

not considered in this series), systemd can have as many as 69 different

binary executables that perform the following tasks, among others:

	 1.	 The systemd program runs as PID 1 and provides

system startup of as many services in parallel as

possible, which, as a side effect, speeds overall

startup times. It also manages the shutdown

sequence.

	 2.	 The systemctl program provides a user interface for

service management.

	 3.	 Support for SystemV and LSB start scripts is offered

for backward compatibility.

	 4.	 Service management and reporting provide more

service status data than SystemV.

	 5.	 systemd standardizes configuration and

management of system services.

Chapter 1 Learning to Love systemd

8

	 6.	 It includes tools for basic system configuration, such

as hostname, date, locale, lists of logged-in users,

running containers and virtual machines, system

accounts, runtime directories and settings, daemons

to manage simple network configuration, network

time synchronization, log forwarding, and name

resolution.

	 7.	 It provides for socket management. Many services

are launched when a data stream is directed to a

socket for that service.

	 8.	 systemd timers provide advanced cron-like

capabilities to include running a script at times

relative to system boot, systemd startup, the last

time the timer was started, and more.

	 9.	 It provides a tool to analyze dates and times used in

timer specifications.

	 10.	 Mounting and unmounting of filesystems with

hierarchical awareness allows safer cascading of

mounted filesystems.

	 11.	 It enables the positive creation and management of

temporary files, including deletion.

	 12.	 An interface to D-Bus provides the ability to run

scripts when devices are plugged in or removed.

This allows all devices, whether pluggable or not,

to be treated as plug-and-play, which considerably

simplifies device handling.

Chapter 1 Learning to Love systemd

9

	 13.	 Its tool to analyze the startup sequence can be used

to locate the services that take the most time.

	 14.	 It includes journals for storing system log messages

and tools for managing the journals.

Over the years, I have read a lot of articles and posts on the Internet

about how systemd is replacing everything and trying to take over

everything in Linux. And I agree; it is taking over pretty much everything.

But really not “everything-everything.” Just everything in that middle

ground of services that lies between the kernel itself and things like the

GNU core utilities, GUI desktops, and user applications.

Let’s start to explore that by examining the structure of our favorite

operating system. Figure 1-1 shows the three basic software layers found

in Linux. The bottom is the Linux kernel; the middle layer consists of

services that may perform startup tasks such as launching various other

services like Network Time Protocol (NTP), Dynamic Host Configuration

Protocol (DHCP), Domain Name System (DNS), secure shell (SSH), device

management, login services, GETTYs, NetworkManager, journal and

log management, logical volume management, printing, kernel module

management, local and remote filesystems, sound and video, display

management, swap space, system statistics collection, and much more.

Chapter 1 Learning to Love systemd

10

Figure 1-1.  A simple conceptual diagram of systemd and the services
it manages with respect to the kernel and application programs such
as tools used by the SysAdmin

It is clear from Figure 1-1 as well as the collective experience as

SysAdmins over the last several years that systemd is indeed intended to

completely replace the old SystemV init system. But I also know that it

significantly extends the capabilities of the init system.

It is also important to recognize that, although Linus Torvalds rewrote

the Unix kernel as a hobby—an exercise—he did nothing to change the

middle layer of system services and simply recompiled SystemV init to

work with his completely new kernel. SystemV is much older than Linux

itself and has been much in need of a complete change to something

totally new for decades.

Chapter 1 Learning to Love systemd

11

So the kernel is new and remains new as it is refreshed frequently

through the leadership of Torvalds and the work of thousands of

programmers around the planet. There are also tens of thousands of new

and powerful application programs at the top layer of Figure 1-1. But until

recently there have been no significant enhancements to the init system

and management of system services.

Lennart Poettering has done for system services what Linus Torvalds

did for the kernel itself. Like Torvalds and the Linux kernel, Poettering has

become the leader and arbiter of what happens inside this middle system

services layer. And I like what I see.

�More Data for the Admin
The new capabilities of systemd include far more status information about

services whether running or not. I like having more information about the

services I am trying to monitor. For example, let’s look at the dhcpd service

in Figure 1-2. Were I to use the SystemV command, service dhcpd status, I

would simply get a message that the service is running or stopped. Using

the systemd command, systemctl status dhcpd, I get much more useful

information. The following data is from the main server on my personal

network.

Chapter 1 Learning to Love systemd

12

Figure 1-2.  systemd displays significantly more information about
services than the old SystemV

Having all of this information available in a single command is

empowering and simplifies the problem determination process for me.

I get more information right at the start. I not only see that the service

is up and running but some of the most recent log entries as well. The

information supplied by this command gives me a more complete picture

of how this particular service is faring.

Chapter 1 Learning to Love systemd

13

�systemd Standardizes Configuration
One of the problems I have had over the years is that, even though “Linux

is Linux,” not all distributions stored their configuration files in the same

places or used the same names or even formats. With the huge numbers

of Linux hosts in the world these days, that lack of standardization is

a problem. I have also encountered horrible config files and SystemV

startup files created by developers who were trying to jump on the Linux

bandwagon and had no idea how to create software for Linux and especially

not for services that required inclusion in the Linux startup sequence.

The systemd unit files standardize configuration and enforce a startup

methodology and organization that provides a level of safety from poorly

written SystemV start scripts. They also provide tools the SysAdmin can

use to monitor and manage services.

Lennart Poettering wrote a short blog post describing the systemd

standard names and locations for common critical configuration files.2

This standardization makes the SysAdmin’s job easier, and it also makes

automating administrative tasks easier in environments with multiple

Linux distributions. Developers benefit from this standardization as well.

�Architecture
Those tasks and more are supported by a number of daemons, control

programs, and configuration files. Figure 1-3 shows many of the

components that belong to systemd. This is a simplified diagram designed

to provide a high-level overview, so it does not include all of the individual

programs or files. Nor does it provide any insight into data flow, which is so

complex that it would be a useless exercise in the context of this book.

2 Poettering, Lennart, http://0pointer.de/blog/projects/the-new-
configuration-files

Chapter 1 Learning to Love systemd

http://0pointer.de/blog/projects/the-new-configuration-files
http://0pointer.de/blog/projects/the-new-configuration-files

14

Figure 1-3.  Architecture of systemd, by Shmuel Csaba Otto Traian
(CC BY-SA 3.0)

A full exposition of systemd would take a book on its own. You do

not need to understand the details of how the systemd components

in Figure 1-3 fit together; it’s enough to know about the programs and

components that enable managing various Linux services and deal with

log files and journals. But it’s clear that systemd is not the monolithic

monstrosity it is purported to be by some of its critics.

�systemd As PID 1
systemd is PID 1. Some of its functions, which are far more extensive than

the old SystemV3 init program, are to manage many aspects of a running

Linux host, including mounting filesystems and starting and managing

system services required to have a productive Linux host. Any of systemd’s

tasks that are not related to the startup sequence are outside the scope of

this chapter (but some will be explored later in this book).

Chapter 1 Learning to Love systemd

15

First, systemd mounts the filesystems defined by /etc/fstab, including

any swap files or partitions. At this point, it can access the configuration

files located in /etc, including its own. It uses its configuration link, /etc/

systemd/system/default.target, to determine which state or target it should

boot the host into. The default.target file is a symbolic link to the true target

file. For a desktop workstation, this is typically going to be the graphical.

target, which is equivalent to runlevel 5 in SystemV. For a server, the

default is more likely to be the multi-user.target, which is like runlevel 3 in

SystemV. The emergency.target is similar to single-user mode. Targets and

services are systemd units.

Table 1-1 compares the systemd targets with the old SystemV startup

runlevels. systemd provides the systemd target aliases for backward

compatibility. The target aliases allow scripts—and many SysAdmins—to

use SystemV commands like init 3 to change runlevels. Of course, the

SystemV commands are forwarded to systemd for interpretation and

execution.

Chapter 1 Learning to Love systemd

16

Table 1-1.  Comparison of SystemV runlevels with systemd targets

and some target aliases

systemd
Targets

Runlevel Target
Aliases

Description

default.

target

This target is always aliased with a symbolic

link to either multi-user.target or graphical.

target. systemd always uses the default.target

to start the system. The default.target should

never be aliased to halt.target, poweroff.target,

or reboot.target.

graphical.

target

5 runlevel5.

target

Multi-user.target with a GUI.

4 runlevel4.

target

Unused. Runlevel 4 was identical to runlevel

3 in the SystemV world. This target could be

created and customized to start local services

without changing the default multi-user.target.

multi-user.

target

3 runlevel3.

target

All services running but command-line

interface (CLI) only.

2 runlevel2.

target

Multi-user, without NFS but all other non-GUI

services running.

rescue.

target

1 runlevel1.

target

A basic system including mounting the

filesystems with only the most basic services

running and a rescue shell on the main

console. I find that this target seldom works as

it should, so alternate methods are needed.

(continued)

Chapter 1 Learning to Love systemd

17

Table 1-1.  (continued)

systemd
Targets

Runlevel Target
Aliases

Description

emergency.

target

S Single-user mode. No services are running;

filesystems are not mounted. This is the most

basic level of operation with only an emergency

shell running on the main console for the user

to interact with the system.

halt.target Halts the system without powering it down.

reboot.

target

6 runlevel6.

target

Reboot.

poweroff.

target

0 runlevel0.

target

Halts the system and turns the power off.

Each target has a set of dependencies described in its configuration

file. systemd starts the required dependencies, which are the services

required to run the Linux host at a specific level of functionality. When

all the dependencies listed in the target configuration files are loaded

and running, the system is running at that target level. In Table 1-1, the

targets with the most system functionality are at the top of the table, with

functionality declining toward the bottom of the table.

systemd also looks at the legacy SystemV init directories to see if any

startup files exist there. If so, systemd uses them as configuration files to

start the services described by the files. The deprecated network service is

a good example of one that still uses SystemV startup files in Fedora.

Figure 1-4 is derived from the bootup(7) man page. It shows a map

of the general sequence of events during systemd startup and the basic

ordering requirements to ensure a successful startup.

Chapter 1 Learning to Love systemd

18

Figure 1-4.  The systemd startup map

The sysinit.target and basic.target targets can be considered

checkpoints in the startup process. Although one of systemd’s design

goals is to start system services in parallel, certain services and functional

targets must be started before other services and targets can start. These

checkpoints cannot be passed until all of the services and targets required

by that checkpoint are fulfilled.

Chapter 1 Learning to Love systemd

19

The sysinit.target is reached when all of the units it depends on are

completed. All of those units, mounting filesystems, setting up swap files,

starting udev, setting the random generator seed, initiating low-level

services, and setting up cryptographic services (if one or more filesystems

are encrypted), must be completed, but, within the sysinit.target, those

tasks can be performed in parallel.

The sysinit.target starts up all of the low-level services and units

required for the system to be marginally functional and that are required to

enable moving onto the basic.target.

After the sysinit.target is fulfilled, systemd then starts all the units

required to fulfill the next target. The basic target provides some additional

functionality by starting units that are required for all of the next targets.

These include setting up things like paths to various executable directories,

communication sockets, and timers.

Finally, the user-level targets, multi-user.target or graphical.target, can

be initialized. The multi-user.target must be reached before the graphical

target dependencies can be met. The underlined targets in Figure 1-4 are

the usual startup targets. When one of these targets is reached, startup has

completed. If the multi-user.target is the default, then you should see a

text-mode login on the console. If graphical.target is the default, then you

should see a graphical login; the specific GUI login screen you see depends

on your default display manager.

The bootup man page also describes and provides maps of the boot

into the initial RAM disk and the systemd shutdown process.

systemd also provides a tool that lists dependencies of a complete

startup or for a specified unit. A unit is a controllable systemd resource

entity that can range from a specific service, such as httpd or sshd, to

timers, mounts, sockets, and more. Try the following command as a non-

root user and scroll through the results:

$ systemctl list-dependencies graphical.target

Chapter 1 Learning to Love systemd

20

Notice that this fully expands the top-level target unit list required to

bring the system up to the graphical target run mode. Use the --all option

to expand all of the other units as well:

$ systemctl list-dependencies --all graphical.target

You can search for strings such as “target,” “slice,” and “socket” using

the search tools of the less command. Try these commands:

$ systemctl list-dependencies multi-user.target
$ systemctl list-dependencies rescue.target
$ systemctl list-dependencies local-fs.target
$ systemctl list-dependencies dbus.service

This tool helps me visualize the specifics of the startup dependencies

for the host I am working on. Go ahead and spend some time exploring the

startup tree for one or more of your Linux hosts. But be careful because the

systemctl man page contains this note:

Note that this command only lists units currently loaded into
memory by the service manager. In particular, this command
is not suitable to get a comprehensive list at all reverse depen-
dencies on a specific unit, as it won’t list the dependencies
declared by units currently not loaded.

—systemctl man page

�Preparation
My best way to learn something new is hands-on. I think most SysAdmins

are the same way. We like to do the things we’re learning.

Chapter 1 Learning to Love systemd

21

Throughout the rest of this book, you’ll encounter experiments

designed to help you gain that hands-on experience with systemd and its

commands. Many of those experiments will be intrusive and inimical to

normal operation of a functional system.

I suggest you use a virtual machine with your favorite version

of Linux—with systemd, of course—so you can explore it in a safe

environment in the event you manage to bork it completely, as I seem to

do rather frequently. Your test system needs to have a GUI desktop (such

as Xfce, LXDE, GNOME, KDE, or your other favorites) installed.

Take a snapshot of the VM when you get it configured the way you like

it, then take snapshots at the end of each chapter. That way, you can always

go back as far as necessary.

�Summary
Even before getting very deep into systemd, it’s obvious that it is both

powerful and complex. It is also apparent that systemd is not a single,

huge, monolithic, and unknowable binary file. Rather, it is composed of

a number of smaller components and sub-commands that are designed

to perform specific tasks. Because it’s all open source, the source code is

available to peruse if you’re interested.

systemd has always generated controversy among various groups of

Linux developers and SysAdmins. We explored some of the reasons for that

rift. Yet I’ve found things to like about both systemd and SystemV. Although

there are Linux distributions that continue to use SystemV init, the

complexity of any init service is too great to enable.

We’ve looked at the functions of systemd and how it differs in

scope from SystemV. We’ve also looked at the much greater amount of

information provided to the SysAdmin by systemd than SystemV and the

greater level of standardization imposed on services by systemd.

Chapter 1 Learning to Love systemd

22

�Exercises
Perform these exercises to complete this chapter:

	 1.	 What features do you like about systemd and why?

	 2.	 What features do you hate about systemd and why?

	 3.	 What is the function of systemd as PID 1?

	 4.	 List at least five tasks performed by systemd.

	 5.	 How do systemd targets relate to SystemV runlevels?

Chapter 1 Learning to Love systemd

23© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_2

CHAPTER 2

Linux Boot
and Startup

�Objectives
In this chapter, you will learn

•	 The difference between Linux boot and startup

•	 What happens during the hardware boot sequence

•	 The functions of and differences between the

MBR and GPT

•	 What happens during the Linux boot sequence

•	 What happens during the Linux startup sequence

•	 How to manage and modify the Linux boot and startup

sequences

•	 The function of the display and window managers

•	 How the login process works for both virtual consoles

and a GUI

•	 What happens when a user logs off

https://doi.org/10.1007/979-8-8688-1328-3_2#DOI

24

�Overview
This chapter explores the hardware boot sequence, the bootup

sequence using the GRUB2 bootloader, and the startup sequence as

performed by the systemd initialization system. It covers in detail

the sequence of events required to change the state of the computer

from off to fully up and running with a user logged in. This knowledge

is important to our understanding of systemd’s role in the boot and

startup of Linux systems.

The complete process that takes a Linux host from an off state to

a running state is complex, but it is open and knowable. Before we

get into the details, a quick overview of the time the host hardware is

turned on until the system is ready for a user to log in will help orient

us. Most of the time, we hear about “the boot process” as a single entity,

but it is not. There are, in fact, three parts to the complete boot and

startup process:

•	 Hardware boot which initializes the system hardware

•	 Linux boot in which the GRUB2 bootloader loads the

Linux kernel and systemd from a storage drive

•	 Linux startup in which systemd makes the host ready

for productive work

It is important to separate the hardware boot from the Linux boot

process from the Linux startup and to explicitly define the demarcation

points between them. Understanding these differences and what part

each plays in getting a Linux system to a state where it can be productive

makes it possible to manage these processes and to better determine the

portion in which a problem is occurring during what most people refer to

as “boot.”

Chapter 2 Linux Boot and Startup

25

�Hardware Boot
The first step of the Linux boot process really has nothing whatever to do

with Linux. This is the hardware portion of the boot process and is the

same for any Intel-based operating system.

When power is first applied to the computer, or the VM we have

created for this course, it runs the Power On Self-Test (POST) which is part

of BIOS or the much newer Unified Extensible Firmware Interface (UEFI).

BIOS stands for Basic I/O System, and POST stands for Power On Self-

Test. When IBM designed the first PC back in 1981, BIOS was designed to

initialize the hardware components. POST is the part of BIOS whose task

is to ensure that the computer hardware functioned correctly. If POST

fails, the computer may not be usable, and so the boot process does not

continue.

Most modern motherboards provide the newer UEFI as a replacement

for BIOS. Many motherboards also provide legacy BIOS support, but fewer

are now doing so. Both BIOS and UEFI perform the same functions—

hardware verification and initialization and loading the bootloader.

BIOS/UEFI POST checks basic operability of the hardware. Then

it locates the boot sectors on all attached bootable devices, including

rotating HDD or SSD storage devices, DVD or CD ROM, or bootable USB

memory sticks. The first boot sector it finds that contains a valid master

boot record (MBR)1 is loaded into RAM, and control is then transferred to

the RAM copy of the boot sector.

1 Wikipedia, “Master Boot Record,” https://en.wikipedia.org/wiki/
Master_boot_record

Chapter 2 Linux Boot and Startup

https://en.wikipedia.org/wiki/Master_boot_record#PT
https://en.wikipedia.org/wiki/Master_boot_record#PT

26

The BIOS/UEFI user interface can be used to configure the system

hardware for things like overclocking, specifying CPU cores as active

or inactive, specific devices from which the system might boot, and the

sequence in which those devices are to be searched for a bootable boot sector.

I do not create or boot from bootable CD or DVD devices anymore. I only use

bootable USB thumb drives to boot from external, removable devices.

Because I sometimes do boot from an external USB drive—or in the case

of a VM, a bootable ISO image like that of the Live USB device—I always

configure my systems to boot first from the external USB device and then

from the appropriate internal disk drive. This is not considered secure in

most commercial environments, but I do a lot of boots to external USB

drives. In most environments, you will want to be more secure and set the

host to boot from the internal boot device only. In environments that need to

be even more secure, you can use a BIOS password to prevent unauthorized

users from accessing BIOS to change the default boot sequence.

Hardware boot ends when the boot sector assumes control of

the system.

�The Boot Sector
The boot sector is always located in the first sector of the storage device

whether HDD or SSD, and it contains the partition table as part of the

master boot record (MBR). This MBR partitioning methodology dates back

to 1983 and imposes limits on modern storage hardware to less than its full

capabilities.

Modern partitioning schemes use the GUID Partition Table2 (GPT) to

overcome those limitations.

In this section, we look very briefly at both MBR and GPT.

2 Wikipedia, “GUID Partition Table,” https://en.wikipedia.org/wiki/GUID_
Partition_Table. This entry contains an excellent description of the MBR, its
problems, and the function and structure of the GPT.

Chapter 2 Linux Boot and Startup

https://en.wikipedia.org/wiki/GUID_Partition_Table
https://en.wikipedia.org/wiki/GUID_Partition_Table

27

�The MBR

The MBR3 is very small—only 512 bytes. Therefore, the space is very

limited and must contain both a tiny bit of code, GRUB stage 1, as well as

the partition table for the drive. The partition table defines the partitions

that subdivide the space on the storage drive.

The historical MBR is capable of supporting four primary partitions

although one partition could be created as a so-called extended partition

which supported additional logical partitions so that the space on the

drive could be further subdivided. The total disk size supported by the

MBR methodology is approximately 2.2 TB (2.2x1012) which is smaller than

many storage devices currently available.

�The GPT

The GPT is a new, modern standard for disk partition tables. Designed

both for much greater disk sizes as well as systemic redundancy, it is larger

than the MBR, so it supports much larger storage devices—up to 9.44

zettabytes, 9.44x1021.

GPT uses an MBR in the first sector of the disk although it is used as a

protective structure to provide an identifier so that system tools don’t see

the drive as an empty storage device.

�Functional Impact MBR vs. GPT

Most of the time, the difference between MBR and GPT is not relevant to

the operation of Linux hosts or the task of problem-solving. The function of

both is to partition storage devices into usable chunks and to provide a tiny

bit of code to provide a transition between the BIOS/UEFI hardware boot

and the main portion of the GRUB bootloader.

3 Wikipedia, “Disk Partitioning – Partition Table,” https://en.wikipedia.org/
wiki/Disk_partitioning#Partition_table

Chapter 2 Linux Boot and Startup

https://en.wikipedia.org/wiki/Disk_partitioning#Partition_table
https://en.wikipedia.org/wiki/Disk_partitioning#Partition_table

28

Using different disk partitioning strategies during the Linux installation

can make a difference between whether the Anaconda installer installs an

MBR or GPT. Either works with the Linux filesystems typically used today,

EXT4, BTRFS, ZFS, and others. The only functional difference is that GPT

supports extremely large capacity storage devices. The kinds of devices

that—for now—would certainly not be found outside the data center even

in large businesses, let alone homes and small to medium businesses.

�Linux Boot
The boot sector that is loaded by BIOS is stage 1 of the GRUB4 bootloader.

The Linux boot process itself is composed of multiple stages of GRUB. We

consider each stage in this section.

�GRUB
The primary function of the GRUB bootloader is to get the Linux kernel

loaded into memory and running.

GRUB2 stands for “GRand Unified Bootloader, version 2,” and it is

now the primary bootloader for most current Linux distributions. GRUB2

is the program which makes the computer just smart enough to find the

operating system kernel and load it into memory. Because it is easier

to write and say GRUB than GRUB2, I may use the term GRUB in this

document, but I will be referring to GRUB2 unless specified otherwise.

GRUB2 provides the same boot functionality as GRUB Legacy,

but GRUB2 also provides a mainframe-like command-based pre-OS

environment and allows more flexibility during the pre-boot phase.

GRUB2 is configured with /boot/grub2/grub.cfg.

4 GNU, GRUB, https://www.gnu.org/software/grub/manual/grub

Chapter 2 Linux Boot and Startup

https://www.gnu.org/software/grub/manual/grub

29

GRUB has been designed to be compatible with the multiboot

specification which allows GRUB to boot many versions of Linux and other

free operating systems; it can also chain load the boot record of proprietary

operating systems. GRUB can also allow the user to choose to boot from

among several different kernels for any given Linux distribution. This

affords the ability to boot to a previous kernel version if an updated one

fails somehow or is incompatible with an important piece of software. I

have used this capability several times over the years.

GRUB can be configured using the /boot/grub/grub.conf file. The

configuration of GRUB or GRUB2 and the use of GRUB2 commands are

outside the scope of this book. As mentioned in the POST section, at the

end of POST, BIOS/UEFI searches the attached disks for a boot record,

located in the GPT. BIOS/UEFI loads the first one it finds into memory and

then starts execution of the boot record.

�The GUID Partition Table
Before going further, let’s look at the GUID Partition Table that replaces

the legacy MBR partition table. The GUID Partition Table (GPT) shown

in Figure 2-1 is a relatively new, modern standard for disk partition

tables. GPT is part of the Unified Extensible Firmware Interface (UEFI)

specification.

Designed both for much greater disk sizes and systemic redundancy,

it is larger than the legacy MBR, so it supports much larger storage devices

up to 9.44 zettabytes, or 9.44 × 1021. The partition table provides pointers to

up to 256 partition entries. Each entry defines a partition in the data area of

the storage device.

Chapter 2 Linux Boot and Startup

30

Figure 2-1.  The GUID Partition Table takes the entire first cylinder of
the storage device and provides for a large number of partitions

GPT does use an MBR in the first sector of the disk although it is

partially designed as a protective structure to provide an identifier so that

system tools that only recognize MBR partitions don’t see the drive as an

empty storage device. The MBR—whether GPT or legacy version—is the

starting point for Linux boot and startup.

You can determine whether a storage device was created with a legacy

MBR or GPT by using the gdisk command.

EXPERIMENT 2-1: IS MY STORAGE DEVICE GPT?

Let’s look at a storage device to determine whether it’s formatted MBR

or GPT. This experiment must be performed as root.

First, identify your storage devices.

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 931.5G 0 disk
└─vg03-Virtual 253:7 0 931.5G 0 lvm /Virtual
sdb 8:16 0 2.7T 0 disk
├─vg04-stuff 253:8 0 250G 0 lvm /stuff
└─vg04-VMArchives 253:9 0 800G 0 lvm /VMArchives
sdc 8:32 0 3.6T 0 disk
└─sdc1 8:33 0 3.6T 0 part
 └─vg_Backups-Backups 253:4 0 3.6T 0 lvm

Chapter 2 Linux Boot and Startup

31

sdd 8:48 0 1.8T 0 disk
└─sdd1 8:49 0 1.8T 0 part
sr0 11:0 1 1024M 0 rom
sr1 11:1 1 668M 0 rom
zram0 252:0 0 8G 0 disk [SWAP]

nvme0n1 259:0 0 476.9G 0 disk
└─vg02-home 253:2 0 250G 0 lvm /home
nvme1n1 259:1 0 476.9G 0 disk
├─nvme1n1p1 259:2 0 5G 0 part /boot/efi
├─nvme1n1p2 259:3 0 5G 0 part /boot
└─nvme1n1p3 259:4 0 466.9G 0 part
 ├─vg01-root 253:0 0 10G 0 lvm /
 ├─vg01-usr 253:1 0 60G 0 lvm /usr
 ├─vg01-var 253:3 0 50G 0 lvm /var
 ├─vg01-tmp 253:5 0 15G 0 lvm /tmp

 └─vg01-ansible 253:6 0 15G 0 lvm <SNIP>

I first selected /dev/nvme0n1. Your device names will probably be different.

But this one is good for illustrative purposes. Now use gdisk to determine the

device format. Your results will be different from mine.

gdisk /dev/nvme0n1
GPT fdisk (gdisk) version 1.0.10

Partition table scan:
 MBR: not present
 BSD: not present
 APM: not present
 GPT: not present

Creating new GPT entries in memory.

Command (? for help):

Chapter 2 Linux Boot and Startup

32

Notice that the scan shows no known partition tables. That’s because this

storage device uses logical volume management (LVM) on a raw disk. That

means it has no traditional partitions.

gdisk /dev/nvme1n1
GPT fdisk (gdisk) version 1.0.10

Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help):

This storage device I scanned on my primary workstation has a GPT

partitioning table scheme. You can see the protective MBR and the GPT line

indicates that a GPT partition is present.

One thing to be aware of when scanning drives with gdisk is the instance in

which all of the partition table formats show “not present.” If that occurs, it is

most likely because the storage device is an LVM physical volume (PV).

The GUID MBR contains a small executable image, which is installed

from the boot.img file. This boot image is loaded into RAM and locates the

core.img file which is the next stage of the boot process. Storage devices

that use the legacy MBR and partition table instead of the GUID MBR and

partitioning structure can still use GRUB2, but the locations of some files

are different. When using the GPT, the core.img file is located in the BIOS

boot partition.

Chapter 2 Linux Boot and Startup

33

The core.img program is smart enough to locate and load the files for

the final stage of GRUB. All of the files for GRUB stage 2 are located in the /

boot/grub2 directory and several subdirectories. GRUB2 does not have an

image file. Instead, it consists mostly of runtime kernel modules that are

loaded as needed from the /boot/efi/EFI directory.

The function of GRUB2 stage 2 is to locate and load a Linux kernel into

RAM and turn control of the computer over to the kernel. The kernel and

its associated files are located in the /boot directory. The kernel files are

identifiable as they are all named starting with vmlinuz. You can list the

contents of the /boot directory to see the currently installed kernels on

your system.

GRUB supports booting from one of a selection of Linux kernels. The

Red Hat package manager, DNF, supports keeping multiple versions of the

kernel so that if a problem occurs with the newest one, an older version

of the kernel can be booted. By default, GRUB provides a pre-boot menu

of the installed kernels, including a rescue option and, if configured, a

recovery option.

�The Kernel
All Linux kernels are in a self-extracting, compressed format to save space.

The kernels are located in the /boot directory, along with an initial RAM

disk image, and device maps of the hard drives.

After the selected kernel is loaded into memory and begins executing,

it must first extract itself from the compressed version of the file before it

can perform any useful work. After the kernel has extracted itself, it loads

systemd and turns control over to it.

This is the end of the boot process. At this point, the Linux kernel and

systemd are running but unable to perform any productive tasks for the

end user because nothing else is running.

Chapter 2 Linux Boot and Startup

34

�Linux Startup
The startup process follows the boot process and brings the Linux

computer up to an operational state in which it is usable for productive

work. The startup process begins when the kernel takes control of

the system.

EXPERIMENT 2-2: EXPLORING TEXT MODE STARTUP

Because of the speed with which Linux boots and the large number of

informational messages it emits into the data stream, it is not possible for us

mere “humons5”[sic] to follow most of it. However, the Linux kernel developers

have provided us with an excellent alternative in the dmesg command.

The dmesg command lists all of the startup messages that were displayed on

the screen and lets us explore what happens during startup. This includes all

kernel messages such as locating memory and devices, as well as the startup

of system services performed by systemd.

Perform this experiment as root user.

[root@testvm1 ~]# dmesg | less
[�0.000000] Linux version 6.1.7-200.fc37.x86_64 [0.000000]

Linux version 6.11.4-201.fc40.x86_64 (mockbuild@49ea9c9b44
de4986ad76c1a7822f2cd3) (gcc (GCC) 14.2.1 20240912 (Red Hat
14.2.1-3), GNU ld version 2.41-37.fc40) #1 SMP PREEMPT_DYNAMIC
Sun Oct 20 15:04:22 UTC 2024

[�0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-
6.11.4-201.fc40.x86_64 root=/dev/mapper/vg01-root ro rd.lvm.
lv=vg01/root rd.lvm.lv=vg01/usr selinux=0

[0.000000] BIOS-provided physical RAM map:

5 Refer to Star Trek: Deep Space Nine (DS9).

Chapter 2 Linux Boot and Startup

35

[�0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009
fbff] usable

[�0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009
ffff] reserved

[�0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000

fffff] reserved
[�0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffe

ffff] usable
[�0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfff

ffff] ACPI data
[�0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00

fff] reserved
[�0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00

fff] reserved
[�0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffff

ffff] reserved
[�0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000021fff

ffff] usable
[0.000000] NX (Execute Disable) protection: active
[0.000000] APIC: Static calls initialized
[0.000000] SMBIOS 2.5 present.
[�0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS

VirtualBox 12/01/2006
[0.000000] DMI: Memory slots populated: 0/0
[0.000000] Hypervisor detected: KVM
[0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
[0.000005] kvm-clock: using sched offset of 14727133304 cycles
[�0.000012] clocksource: kvm-clock: mask: 0xffffffffffffffff

max_cycles: 0x1cd42e4dffb, max_idle_ns: 881590591483 ns
[0.000018] tsc: Detected 2868.906 MHz processor
[�0.002686] e820: update [mem 0x00000000-0x00000fff]

usable ==> reserved
[0.002696] e820: remove [mem 0x000a0000-0x000fffff] usable
[0.002705] last_pfn = 0x220000 max_arch_pfn = 0x400000000

Chapter 2 Linux Boot and Startup

36

[�0.002811] MTRR map: 5 entries (3 fixed + 2 variable; max 35),
built from 16 variable MTRRs

[�0.002817] x86/PAT: Configuration [0-7]: WB WC UC- UC
WB WP UC- WT

[�0.002941] e820: update [mem 0xe0000000-0xffffffff] usable ==>

reserved
[0.002951] last_pfn = 0xe0000 max_arch_pfn = 0x400000000
[0.019740] found SMP MP-table at [mem 0x0009fbf0-0x0009fbff]
[0.020703] RAMDISK: [mem 0x33f0e000-0x35f7efff]
<SNIP>

The numbers like [0.002696] are the time in nanoseconds (millionths) since

the kernel started running.

Page through the data and look for events such as memory initialization, CPU

discovery, filesystem mounts, network interface card (NIC) configurations, and

any other.

�systemd
systemd is the mother of all processes. Its process ID (PID) is always 1. It

is responsible for bringing the Linux host up to a state in which productive

work can be done. Some of its functions, which are far more extensive than

the old SystemV init program, are to manage many aspects of a running

Linux host, including mounting filesystems and starting and managing

system services required to have a productive Linux host. Any of systemd’s

tasks that are not related to the startup sequence are outside the scope of

this chapter, but we will explore them in later chapters.

systemd mounts the filesystems as defined by the /etc/fstab file

(filesystem table), including any swap files or partitions. At this point, it

can access the configuration files located in /etc, including its own. It uses

its configuration link, /etc/systemd/system/default.target, to determine

Chapter 2 Linux Boot and Startup

37

which state or target into which it should boot the host. The default.target

file is a symbolic link—a pointer—to the true target file. For a desktop

workstation, this is typically going to be the graphical.target, which is

equivalent to runlevel 5 in SystemV. For a server, the default is more

likely to be the multi-user.target which is like runlevel 3 in SystemV. The

emergency.target is similar to single-user mode. Targets and services are

systemd units.

Table 2-1 is a comparison of the systemd targets with the old SystemV

startup runlevels. The systemd target aliases are provided by systemd

for backward compatibility. The target aliases allow scripts—and many

SysAdmins like myself—to use SystemV commands like init 3 to change

targets. Of course, the SystemV commands are forwarded to systemd for

interpretation and execution.

Table 2-1.  Comparison of SystemV runlevels with systemd targets

and some target aliases

systemd
Targets

SystemV
Runlevel

Target
Aliases

Description

default.target This target is always aliased with a

symbolic link to either multi-user.target

or graphical.target. systemd always

uses the default.target to start the

system. The default.target should never

be aliased to halt.target, poweroff.target,

or reboot.target.

graphical.

target

5 runlevel5.

target

Multi-user.target with a GUI.

(continued)

Chapter 2 Linux Boot and Startup

38

Table 2-1.  (continued)

systemd
Targets

SystemV
Runlevel

Target
Aliases

Description

4 runlevel4.

target

Unused. Runlevel 4 was identical to

runlevel 3 in the SystemV world. This

target could be created and customized

to start local services without changing

the default multi-user.target.

multi-user.

target

3 runlevel3.

target

Multi-user with all services running but

command-line interface (CLI) only.

2 runlevel2.

target

Multi-user, without NFS but all other

non-GUI services running.

rescue.target 1 runlevel1.

target

A basic system including mounting the

filesystems with only the most basic

services running and a rescue shell on

the main console.

emergency.

target

S No services are running; filesystems are

not mounted. This is the most basic level

of operation with only an emergency

shell running on the main console for

the user to interact with the system.

Single-user mode in SystemV.

halt.target Halts the system without powering it

down.

reboot.target 6 runlevel6.

target

Reboot.

poweroff.

target

0 runlevel0.

target

Halts the system and turns the

power off.

Chapter 2 Linux Boot and Startup

39

Each target has a set of dependencies described in its configuration

file. systemd starts the required dependencies. These dependencies are the

services required to run the Linux host at a specific level of functionality.

When all of the dependencies listed in the target configuration files are

loaded and running, the system is running at that target level.

systemd also looks at the legacy SystemV init directories to see if any

startup files exist there. If so, systemd uses those as configuration files to

start the services described by the files. The deprecated network service

is a good example of one of those that still use SystemV startup files

in Fedora.

Figure 2-2 is copied directly from the bootup man page.6 It shows a

map of the general sequence of events during systemd startup and the

basic ordering requirements to ensure a successful startup.

The sysinit.target and basic.target targets can be considered as

checkpoints in the startup process. Although systemd has as one of its

design goals to start system services in parallel, there are still certain

services and functional targets that must be started before other services

and targets can be started. These checkpoints cannot be passed until all of

the services and targets required by that checkpoint are fulfilled.

The sysinit.target is reached when all of the units on which it depends

are completed. All of those units, mounting filesystems, setting up swap

files, starting udev, setting the random generator seed, initiating low-level

services, and setting up cryptographic services if one or more filesystems

are encrypted, must be completed, but within the sysinit.target those tasks

can be performed in parallel.

The sysinit.target starts up all of the low-level services and units

required for the system to be marginally functional and that are required to

enable moving on to the basic.target.

6 Use the command man bootup.

Chapter 2 Linux Boot and Startup

40

After the sysinit.target is fulfilled, systemd next starts the basic.target,

starting all of the units required to fulfill it. The basic target provides some

additional functionality by starting units that are required for all of the next

targets. These include setting up things like paths to various executable

directories, communication sockets, and timers.

Finally, the user-level targets, multi-user.target and graphical.target,

are initialized. The multi-user.target must be reached before the graphical

target dependencies can be met. The underlined targets in Figure 2-2

are the usual startup targets. When one of these targets is reached, then

startup has completed. If the multi-user.target is the default, then you

should see a text mode login on the console. If graphical.target is the

default, then you should see a graphical login; the specific GUI login

screen you see will depend upon the default display manager.

The bootup man page also describes and provides maps of the boot

into the initial RAM disk and the systemd shutdown process.

Chapter 2 Linux Boot and Startup

41

Figure 2-2.  The systemd startup map from the bootup man page

Chapter 2 Linux Boot and Startup

42

EXPERIMENT 2-3: CHANGING THE DEFAULT TARGET

So far, we have only booted to the graphical.target, so let’s change the default

target to multi-user.target to boot into a console interface rather than a GUI

interface.

As the root user on testvm1, change to the directory in which systemd

configuration is maintained and do a long listing.

[root@testvm1 ~]# cd /etc/systemd/system/ ; ll
total 56
drwxr-xr-x. 2 root root 4096 Nov 5 04:17 basic.target.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:17 bluetooth.target.wants
lrwxrwxrwx. 1 root root 37 Nov 5 04:17 ctrl-alt-del.target ->
/usr/lib/systemd/system/reboot.target
<SNIP>
lrwxrwxrwx. 1 root root 40 Jan 17 07:39 default.target ->
/usr/lib/systemd/system/graphical.target
drwxr-xr-x. 2 root root 4096 Nov 5 04:18 'dev-virtio\x2dports-
org.qemu.guest_agent.0.device.wants'
lrwxrwxrwx 1 root root 39 Feb 7 16:18 display-manager.
service -> /usr/lib/systemd/system/lightdm.service
drwxr-xr-x. 2 root root 4096 Nov 5 04:17 getty.target.wants
drwxr-xr-x. 2 root root 4096 Jan 17 07:54 graphical.target.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:18 local-fs.target.wants
drwxr-xr-x. 2 root root 4096 Jan 25 13:52 multi-user.target.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:17 network-online.
target.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:18 remote-fs.target.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:18 sockets.target.wants
drwxr-xr-x. 2 root root 4096 Jan 17 02:53 sysinit.target.wants
drwxr-xr-x. 2 root root 4096 Jan 20 11:28 sysstat.service.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:18 timers.target.wants
drwxr-xr-x. 2 root root 4096 Nov 5 04:18 vmtoolsd.service.
requires

Chapter 2 Linux Boot and Startup

43

The default.target entry is a symbolic link to the directory, /lib/systemd/

system/graphical.target. List that directory to see what else is there.

[root@testvm1 system]# ls -l /lib/systemd/system/ | less

You should see files, directories, and more links in this listing, but look for

multi-user.target and graphical.target. Now display the contents of default.

target which is a link to the file, /lib/systemd/system/graphical.target. The

cat command shows the content of the linked file. You can see that this link

provides access to a file that is actually located in a different directory from

the PWD—just as if it were in the PWD.

[root@testvm1 system]# cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
�systemd is free software; you can redistribute it and/or

modify it
�under the terms of the GNU Lesser General Public License

as published by
�the Free Software Foundation; either version 2.1 of the

License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target
display-manager.service
AllowIsolate=yes
[root@testvm1 system]#

Chapter 2 Linux Boot and Startup

44

This link to the graphical.target file now describes all of the prerequisites and

needs that the graphical user interface requires. To enable the host to boot to

multi-user mode, we need to delete the existing link and then create a new

one that points to the correct target. Make pwd /etc/systemd/system if it is not

already.

rm -f default.target
ln -s /lib/systemd/system/multi-user.target default.target

List the default.target link to verify that it links to the correct file.

ls -l default.target
lrwxrwxrwx 1 root root 37 Nov 28 16:08 default.target -> /
lib/systemd/system/multi-user.target
[root@testvm1 system]#

If your link does not look exactly like that, delete it and try again. List the

content of the default.target link.

[root@testvm1 system]# cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
�systemd is free software; you can redistribute it and/or

modify it
�under the terms of the GNU Lesser General Public License

as published by
�the Free Software Foundation; either version 2.1 of the

License, or
(at your option) any later version.

[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)

Chapter 2 Linux Boot and Startup

45

Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes
[root@testvm1 system]#

The default.target has different requirements in the [Unit] section. It does not

require the graphical display manager.

Reboot. Your VM should boot to the console login for virtual console 1 which

is identified on the display as tty1. Now that you know what is necessary

to change the default target, change it back to the graphical.target using a

command designed for the purpose. Let’s first check the current default target.

systemctl get-default
multi-user.target

Now change the default target with the command used explicitly for that

purpose.

systemctl set-default graphical.target
Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target → /usr/
lib/systemd/system/graphical.target.
[root@testvm1 ~]#

Having changed the default target using both methods, you now understand

the details of what is happening when using the systemctl command.

Understanding these details can help you when trying to locate the true source

of a problem.

Type the following command to go directly to the display manager login page

without having to reboot:

systemctl isolate default.target

Chapter 2 Linux Boot and Startup

46

I am unsure why the term “isolate” was chosen for this sub-command by the

developers of systemd. However, its effect is to switch targets from one target

to another, in this case from the emergency target to the graphical target.

The command above is equivalent to the old init 5 command in the days of

SystemV start scripts and the init program.

GRUB and the systemd init system are key components in the boot

and startup phases of most modern Linux distributions. These two

components work together smoothly to first load the kernel and then to

start up all of the system services required to produce a functional GNU/

Linux system.

Although I do find both GRUB and systemd more complex than their

predecessors, they are also just as easy to learn and manage. The man

pages have a great deal of information about systemd, and freedesktop.org

has a website that describes the complete startup process,7 and a complete

set of systemd man pages8 is also online.

�Graphical Login
There are still two components that figure into the very end of the boot and

startup process for the graphical.target, the display manager (dm) and the

window manager (wm). These two programs, regardless of which ones you

use on your Linux GUI desktop system, always work closely together to

make your GUI login experience smooth and seamless before you even get

to your desktop.

7 Freedesktop.org, systemd bootup process, https://www.freedesktop.org/
software/systemd/man/bootup.html
8 Freedesktop.org, systemd index of man pages, https://www.freedesktop.org/
software/systemd/man/index.html

Chapter 2 Linux Boot and Startup

https://www.freedesktop.org/software/systemd/man/bootup.html
https://www.freedesktop.org/software/systemd/man/bootup.html
https://www.freedesktop.org/software/systemd/man/index.html
https://www.freedesktop.org/software/systemd/man/index.html

47

�Display Manager
A display manager9 is a program with the sole function of providing the

GUI login screen for Linux. After login to a GUI desktop, the display

manager turns control over to the window manager. When you log out of

the desktop, the display manager is given control again to display the login

screen and wait for another login.

There are several display managers; some are provided with their

respective desktops. For example, the gdm display manager is provided

with the GNOME desktop. Other display managers are not directly

associated with a specific desktop. Any of the display managers can be

used for your login screen regardless of which desktop you are using. And

not all desktops have their own display managers. Such is the flexibility of

Linux and well-written, modular code.

The typical desktops and display manager combinations are shown

in Table 2-2. The display manager for the first desktop that is installed,

that is, GNOME, KDE, etc., becomes the default one. For Fedora, this

is usually gdm which is the GNOME display manager. If GNOME is not

installed, then the display manager for the installed desktop is the default.

If the desktop selected during installation does not have a default display

manager, then gdm is installed and used. If you use KDE as your desktop,

the new SDDM10 is the default display manager.

9 Wikipedia, “X Display Manager,” https://en.wikipedia.org/wiki/X_display_
manager_(program_type)
10 Wikipedia, “Simple Desktop Display Manager,” https://en.wikipedia.org/
wiki/Simple_Desktop_Display_Manager

Chapter 2 Linux Boot and Startup

https://en.wikipedia.org/wiki/X_display_manager_(program_type
https://en.wikipedia.org/wiki/X_display_manager_(program_type
https://en.wikipedia.org/wiki/Simple_Desktop_Display_Manager
https://en.wikipedia.org/wiki/Simple_Desktop_Display_Manager

48

11 Wikipedia, “X Window Manager,” https://en.wikipedia.org/wiki/
X_window_manager
12 Wikipedia, “X Window System,” https://en.wikipedia.org/wiki/
X_Window_System
13 Wikipedia, “Wayland,” https://en.wikipedia.org/wiki/Wayland_
(display_server_protocol)

Table 2-2.  A short list of display managers

Desktop Display Manager Comments

GNOME gdm GNOME Display Manager

lightdm Lightweight Display Manager

LXDE lxdm LXDE Display Manager

KDE sddm Simple Desktop Display Manager (Fedora 21

and above)

xdm Default X Window System Display Manager

Regardless of which display manager is configured as the default

at installation time, later installation of additional desktops does not

automatically change the display manager used. If you want to change

the display manager, you must do it yourself from the command line. Any

display manager can be used, regardless of which window manager and

desktop is used.

�Window Manager
The function of a window manager11 is to manage the creation, movement,

and destruction of windows on a GUI desktop, including the GUI login

screen. The window manager works with the Xwindow12 system or the

newer Wayland13 to perform these tasks. These graphical subsystems

provide all of the primitives and functions needed to generate the graphics

for the Linux graphical user interface.

Chapter 2 Linux Boot and Startup

https://en.wikipedia.org/wiki/X_window_manager
https://en.wikipedia.org/wiki/X_window_manager
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

49

The window manager also controls the appearance of the windows

it generates. This includes the functional and decorative aspects of the

windows, such as the look of buttons, sliders, window frames, pop-up

menus, and more.

As with almost every other component of Linux, there are many

different window managers from which to choose. The list in Table 2-3

represents only a sample of the available window managers. Some of these

window managers are stand-alone, that is, they are not associated with

a desktop and can be used to provide a simple graphical user interface

without the more complex, feature-rich, and more resource-intensive

overhead of a full desktop environment. Stand-alone window managers

should not be used with any of the desktop environments.

Table 2-3.  A short list of window managers

Desktop Window Manager Comments

Fluxbox

FVWM

IceWM

KDE Kwin Starting with KDE Plasma 4 in 2008

GNOME Mutter Default starting with GNOME 3

LXDE Openbox

twm A very old and simple tiling window manager.

Some distros use it as a fallback in case no

other window manager or desktop is available

Xfce xfwm4

Chapter 2 Linux Boot and Startup

50

Most window managers are not directly associated with any specific

desktop. In fact, some window managers can be used without any type of

desktop software, such as KDE or GNOME, to provide a very minimalist

GUI experience for users. Many desktop environments support the use of

more than one window manager.

�How Do I Deal with All These Choices?
In most modern distributions, the choices are made for you at installation

time and are based on your selection of desktops and the preferences of

the packagers of your distribution. The desktop, window manager, and the

display manager can be easily changed.

Now that systemd has become the standard startup system in many

distributions, you can set the preferred display manager in /etc/systemd/

system which is where the basic system startup configuration is located.

There is a symbolic link (symlink) named display-manager.service that

points to one of the display manager service units in /usr/lib/systemd/

system. Each installed display manager has a service unit located there. To

change the active display manager, remove the existing display-manager.

service link and replace it with the one you want to use.

EXPERIMENT 2-4: DISPLAY AND WINDOW MANAGERS

Perform this experiment as root. We will install additional display managers

and stand-alone window managers, then switch between them.

Check and see which window managers are already installed. The RPMs in

which the window managers are packaged have inconsistent naming, so it is

difficult to locate them using a simple DNF search unless you already know

their RPM package names which, after a bit of research, I do.

Chapter 2 Linux Boot and Startup

51

dnf list fluxbox fvwm icewm xorg-x11-twm xfwm4
Last metadata expiration check: 0:19:40 ago on Sun 05 Feb 2023
01:37:32 PM EST.
Installed Packages
xfwm4.x86_64 4.16.1-6.fc37 @anaconda

Available Packages
fluxbox.x86_64 1.3.7-20.fc37 fedora
fvwm.x86_64 2.6.9-8.fc37 fedora
icewm.x86_64 3.3.1-1.fc37 updates

Now let’s look at some of the display managers.

dnf list gdm lightdm lxdm sddm xfdm xorg-x11-xdm
Last metadata expiration check: 0:20:23 ago on Sun 05 Feb 2023
01:37:32 PM EST.
Installed Packages
lightdm.x86_64 1.32.0-2.fc37 @anaconda
Available Packages
gdm.i686 1:43.0-3.fc37 fedora
gdm.x86_64 1:43.0-3.fc37 fedora
lightdm.i686 1.32.0-2.fc37 fedora
lxdm.x86_64 0.5.3-22.D20220831git2d4ba970.fc37 fedora
sddm.i686 0.19.0^git20221025.fc24321-1.fc37 fedora
sddm.x86_64 0.19.0^git20221025.fc24321-1.fc37 fedora

Each display manager is started as a systemd service, so another way

to determine which ones are installed is to check the /usr/lib/systemd/

system/ directory. The lightdm display manager shows up twice as installed

and available because there was an update for it at the time this task was

performed.

cd /usr/lib/systemd/system/ ; ll *dm.service
-rw-r--r--. 1 root root 1081 Jul 21 2022 lightdm.service
[root@testvm1 system]#

Chapter 2 Linux Boot and Startup

52

Like my VM, yours should have only a single dm, the lightdm. Let’s install lxdm

as the additional display manager, with FVWM, fluxbox, and icewm for window

managers.

dnf install -y lxdm fvwm fluxbox icewm

Now we must restart the display manager service to display the newly

installed window managers in the display manager selection tool. The simplest

way is to log out of the desktop and restart the dm from a virtual console

session.

systemctl restart display-manager.service

Or we could do this by switching to the multi-user target and then back to the

graphical target. Do this, too, just to see what switching between these targets

looks like.

systemctl isolate multi-user.target
systemctl isolate graphical.target

But this second method is a lot more typing. Log out, if necessary, to switch

back to the lightdm login on vc1 and look in the upper-right corner of the

lightdm login screen. The leftmost icon, which on my VM looks like a sheet of

paper with a wrench,14 allows us to choose the desktop or window manager

we want to use before we log in. Click this icon and choose FVWM from the

menu in Figure 2-3, then log in.

14 The icon on your version of lightdm might be different. This icon is used to show
the currently selected DM, so it will change when you select a different one.

Chapter 2 Linux Boot and Startup

53

Figure 2-3.  The lightdm display manager menu now shows the
newly installed window managers

Explore this window manager by using a left-click on the desktop, open an

Xterm instance, and locate the menu option that gives access to application

programs. Figure 2-4 shows the FVWM desktop (this is not a desktop

environment like KDE or GNOME) with an open Xterm instance and a menu

tree that is opened with a left-click on the display. A different menu is opened

with a right-click.

FVWM is a very basic but usable window manager. Like most window

managers, it provides menus to access various functions and a graphical

display that supports simple windowing functionality. FVWM also provides

multiple windows in which to run programs for some task management

capabilities.

Notice that the XDGMenu in Figure 2-4 also contains Xfce applications.

The Start Here menu item leads to the FVWM menus that include all of the

standard Linux applications that are installed on the host.

Chapter 2 Linux Boot and Startup

54

Figure 2-4.  The FVWM window manager with an Xterm instance
and some of the available menus

After spending a bit of time exploring the FVWM interface, log out. Can’t find

the way to do that? Neither could I as it is very nonintuitive. Left-click the

desktop and open the FVWMConsole. Then type in the command Quit—yes,

with the uppercase Q—and press Enter.

We could also open an Xterm session and use the following command which

kills all instances of the FVWM window manager belonging to the student user:

killall fvwm

Try each of the other window managers, exploring the basic functions of

launching applications and a terminal session. When you have finished that,

exit whichever window manager you are in and log in again using the Xfce

desktop environment.

Chapter 2 Linux Boot and Startup

55

Change the display manager to one of the new ones we have installed. Each

display manager has the same function, to provide a GUI for login and some

configuration such as the desktop environment or window manager to start as

the user interface. Change into the /etc/systemd/system/ directory and list the

link for the display manager service.

cd /etc/systemd/system/ ; ll display-manager.service
total 60
lrwxrwxrwx. 1 root root 39 Nov 5 04:18 display-manager.
service -> /usr/lib/systemd/system/lightdm.service

Locate all of the display manager services in the /usr/lib/systemd/system/

directory.

ll /usr/lib/systemd/system/*dm.service
-rw-r--r--. 1 root root 1081 Jul 21 2022 /usr/lib/systemd/
system/lightdm.service
-rw-r--r-- 1 root root 384 Sep 11 02:19 /usr/lib/systemd/
system/lxdm.service

And make the change.

rm -f display-manager.service
ln -s /usr/lib/systemd/system/lxdm.service display-
manager.service
ll display-manager.service
lrwxrwxrwx 1 root root 36 Feb 5 16:08 display-manager.
service -> /usr/lib/systemd/system/lxdm.service

As far as I can tell from my experiments at this point, rebooting the host is the

only way to reliably activate the new dm. Go ahead and reboot your VM now to

do that. Figure 2-5 shows what the lxdm display manager looks like.

Chapter 2 Linux Boot and Startup

56

Figure 2-5.  The lxdm display manager looks a bit different from
lightdm but performs the same function to allow you to select a
window manager and to log in

Log in using lxdm. Then log out and switch back to the lightdm.

Different distributions and desktops have various means of changing

the window manager, but, in general, changing the desktop environment

also changes the window manager to the default one for that desktop.

Chapter 2 Linux Boot and Startup

57

For current releases of Fedora Linux, the desktop environment can be

changed on the display manager login screen. If stand-alone display

managers are also installed, they also appear in the list with the desktop

environments.

There are many different choices for display and window managers

available. When you install most modern distributions with any kind of

desktop, the choices of which ones to install and activate are usually made

by the installation program. For most users, there should never be any

need to change these choices. For others who have different needs, or

for those who are simply more adventurous, there are many options and

combinations from which to choose. With a little research, you can make

some interesting changes.

�Console Login
Not all Linux systems use or even have a graphical interface installed.

Login to these hosts is through the Linux virtual console.

A console is a special terminal because it is the primary terminal

connected to a host. It is the terminal at which the system operator would

sit to enter commands and perform tasks that were not allowed at other

terminals connected the host. The console is also the only terminal on

which the host would display system-level error messages when problems

occurred.

Figure 2-6 shows Unix developers Ken Thompson and Dennis Ritchie

at a DEC computer running Unix. Thompson is sitting at a teletype

terminal used as a console to interface with the computer.

Chapter 2 Linux Boot and Startup

58

Figure 2-6.  Unix developers Ken Thompson and Dennis Ritchie.
Thompson is sitting at a teletype terminal used as a console to
interface with a DEC computer running Unix. Peter Hamer—
Uploaded by Magnus Manske

There can be many terminals connected to mainframe and Unix

hosts, but only one can act as a console. On most mainframes and Unix

hosts, the console was connected through a dedicated connection that

was designated specifically for the console. Like Unix, Linux has runlevels,

and some of the runlevels such as runlevel 1, single-user mode, and

recovery mode are used only for maintenance. In these runlevels, only the

console is functional to allow the SysAdmin to interact with the system and

perform maintenance.

Chapter 2 Linux Boot and Startup

59

Note  KVM stands for Keyboard, Video, and Mouse, the three
devices that most people use to interact with their computers.

On a PC, the physical console is usually the keyboard, monitor

(video), and sometimes the mouse (KVM) that are directly attached to the

computer. These are the physical devices used to interact with BIOS during

the BIOS boot sequence and can be used during the early stages of the

Linux boot process to interact with GRUB and choose a different kernel to

boot or modify the boot command to boot into a different runlevel.

Because of the close physical connection to the computer of the KVM

devices, the SysAdmin must be physically present at this console during

the boot process in order to interact with the computer. Remote access is

not available to the SysAdmin during the boot process and only becomes

available when the SSHD service is up and running.

�Virtual Consoles
Modern personal computers and servers that run Linux do not usually

have dumb terminals that can be used as a console. Linux typically

provides the capability for multiple virtual consoles to allow for multiple

logins from a single, standard PC keyboard and monitor. Most Linux

distributions usually provide for six or seven virtual consoles for text

mode logins. If a graphical interface is used, the first virtual console, vc1,

becomes the first graphical (GUI) session after the X Window System (X)

starts, and vc7 becomes the second GUI session.

Each virtual console is assigned to a function key corresponding to the

console number. So vc1 would be assigned to function key F1 and so on. It

is easy to switch to and from these sessions. On a physical computer, you

can hold down the Ctrl+Alt keys and press F2 to switch to vc2 as shown in

Figure 2-7. Then hold down the Ctrl+Alt keys and press F1 to switch to vc1

Chapter 2 Linux Boot and Startup

60

and what is usually the graphical desktop interface. We will cover how to

do this on a VM in Experiment 2-5. If there is no GUI running, vc1 will be

simply another text console.

Figure 2-7.  Login prompt for virtual console 2

Virtual consoles provide a means to access multiple consoles using a

single physical system console, the keyboard, video display, and mouse

(KVM). This gives administrators more flexibility to perform system

maintenance and problem-solving. There are some other means for

additional flexibility, but virtual consoles are always available if you have

physical access to the system or directly attached KVM device or some

logical KVM extension such as Integrated Lights Out (ILO). Other means

such as the screen command might not be available in some environments,

and a GUI desktop will probably not be available on most servers.

�Using Virtual Consoles

EXPERIMENT 2-5: USING VIRTUAL CONSOLES

For this experiment, you will use one of the virtual consoles to log in to the

command line as root. The command line is where you will do most of your

work as a system administrator. You will have an opportunity to use a terminal

session in the GUI desktop later, but this is what your system will look like if

you do not have a GUI.

Chapter 2 Linux Boot and Startup

61

Press Ctrl+Alt+F2 to access virtual console 2.

Log in to virtual console session 2 as root. Type root on the Login line and

press the Enter key. Type in your root password and press Enter again. You

should now be logged in and at the command prompt.

Enter a couple simple commands, then enter exit to log out of the virtual

console.

Although these virtual consoles can be handy in some situations such

as recovering from a system crash of some sort, the experiments in this

book can all be performed using a GUI terminal emulator on your desktop.

�How Logins Work
After a Linux host is turned on, it boots and goes through the startup

process. When the startup process is completed, we are presented with

a graphical or command-line login screen. Without a login prompt, it is

impossible to log in to a Linux host.

systemd manages logins using the systemd-logind.service. This service

keeps track of user logins, processes, and idle states. How the login prompt

is displayed and how a new one is displayed after a user logs out is the final

stage of understanding the Linux startup.

Let’s take a quick look at the systemd-logind.service.

Chapter 2 Linux Boot and Startup

62

EXPERIMENT 2-6: EXPLORING SYSTEMD-LOGIND.SERVICE

In a root terminal session, view the status of the systemd-logind.service.

systemctl status systemd-logind.service
● systemd-logind.service - User Login Management
 �Loaded: loaded (/usr/lib/systemd/system/systemd-logind.

service; static)
 �Drop-In: /usr/lib/systemd/system/systemd-logind.

service.d
 └─10-grub2-logind-service.conf
 /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf
 �Active: active (running) since Thu 2024-10-24 10:55:38

EDT; 24h ago
 Docs: man:sd-login(3)
 man:systemd-logind.service(8)
 man:logind.conf(5)
 man:org.freedesktop.login1(5)
 Main PID: 1060 (systemd-logind)
 Status: "Processing requests..."
 Tasks: 1 (limit: 9471)
 FD Store: 0 (limit: 512)
 Memory: 1.8M (peak: 2.3M)
 CPU: 7.484s
 CGroup: /system.slice/systemd-logind.service
 └─1060 /usr/lib/systemd/systemd-logind

Oct 24 10:55:38 testvm1.both.org systemd[1]: Starting
systemd-logind.service - User Login Management...
Oct 24 10:55:38 testvm1.both.org systemd-logind[1060]: New
seat seat0.

Chapter 2 Linux Boot and Startup

63

Oct 24 10:55:38 testvm1.both.org systemd-logind[1060]:
Watching system buttons on /dev/input/event0 (Power Button)
Oct 24 10:55:38 testvm1.both.org systemd-logind[1060]:
Watching system buttons on /dev/input/event1 (Sleep Button)
Oct 24 10:55:38 testvm1.both.org systemd-logind[1060]:
Watching system buttons on /dev/input/event2 (AT Translated
Set 2 keyboard)
Oct 24 10:55:38 testvm1.both.org systemd[1]: Started
systemd-logind.service - User Login Management.
Oct 24 10:55:44 testvm1.both.org systemd-logind[1060]: New
session c1 of user lightdm.
Oct 24 11:20:14 testvm1.both.org systemd-logind[1060]: New
session 2 of user root.

�CLI Login Screen
The CLI login screen is initiated by a program called a getty, which stands

for GEt TTY. The historical function of a getty was to wait for a connection

from a remote dumb terminal to come in on a serial communications line.

The getty program would spawn the login screen and wait for a login to

occur. When the remote user logged in, the getty would terminate, and

the default shell for the user account would launch and allow the user to

interact with the host on the command line. When the user logged out, the

init program would spawn a new getty to listen for the next connection.

We now use an agetty, which is an advanced form of getty, in

combination with the systemd service manager to handle the Linux virtual

consoles as well as the increasingly rare incoming modem lines. The steps

listed below shows the sequence of events in a modern Linux computer:

	 1.	 systemd starts the systemd-getty-generator daemon.

	 2.	 The systemd-getty-generator spawns an agetty on

each of the virtual consoles using the serial-getty@.

service.

Chapter 2 Linux Boot and Startup

64

	 3.	 The agettys wait for virtual console connection, that

is, the user switching to one of the VCs.

	 4.	 The agetty presents the text mode login screen on

the display.

	 5.	 The user logs in.

	 6.	 The default shell specified in /etc/passwd is started.

	 7.	 The shell configuration scripts run.

	 8.	 The user works in the shell session.

	 9.	 The user logs off.

	 10.	 If present, the user’s logout script runs. For Bash,

this is .bash_logout.

	 11.	 The systemd-getty-generator spawns an agetty on

the logged-out virtual console.

	 12.	 Go to step 3.

Starting with step 3, this is a circular process that repeats as long as

the host is up and running. New login screens are displayed on a virtual

console immediately after the user logs out of the old session.

�GUI Login Screen
The GUI login screen as displayed by the display manager is handled

in much the same way as the systemd-getty-generator handles the text

mode login:

	 1.	 The specified display manager (dm) is launched by

systemd at the end of the startup sequence.

	 2.	 The display manager displays graphical login

screen, usually on virtual console 1.

Chapter 2 Linux Boot and Startup

65

	 3.	 The dm waits for a login.

	 4.	 The user logs in.

	 5.	 The specified window manager is started.

	 6.	 The specified desktop GUI, if any, is started.

	 7.	 The user performs work in the window manager/

desktop.

	 8.	 The user logs out.

	 9.	 systemd respawns the display manager.

	 10.	 Go to step 2.

The steps are almost the same, and the display manager functions as a

graphical version of the agetty.

�Summary
We have explored the Linux boot and startup processes in some detail.

This chapter explored reconfiguration of the GRUB bootloader to display

the kernel boot and startup messages as well as to create recovery mode

entries, ones that actually work, for the GRUB menu.

We installed and explored some different window managers as

an alternative to more complex desktop environments. The desktop

environments do depend upon at least one of the window managers for

their low-level graphical functions while providing useful, needed, and

sometimes fun features. We also discovered how to change the default

display manager to provide a different GUI login screen as well as how the

GUI and command-line logins work.

This chapter has also introduced some of the systemd tools to perform

basic tasks like viewing and changing the default target and restarting a

service.

Chapter 2 Linux Boot and Startup

66

�Exercises
Perform these exercises to complete this chapter:

	 1.	 Describe the Linux boot process.

	 2.	 Describe the Linux startup process.

	 3.	 What does GRUB do?

	 4.	 Where is stage 1 of GRUB located on the hard drive?

	 5.	 What is the function of systemd during startup?

	 6.	 Where are the systemd startup target files and links

located?

	 7.	 What is the function of an agetty?

	 8.	 Describe the function of a display manager.

	 9.	 What Linux component attaches to a virtual console

and displays the text mode login screen?

	 10.	 List and describe the Linux components involved

and the sequence of events that take place when a

user logs in to a virtual console until they log out.

	 11.	 What happens when the display manager service

is restarted from a root terminal session on the

desktop using the command systemctl restart
display-manager.service?

Chapter 2 Linux Boot and Startup

67© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_3

CHAPTER 3

Understanding Linux
Startup with systemd

�Objectives
In this chapter, you will learn

•	 The files and tools that manage the Linux startup

sequence

•	 How to change the default startup target (runlevel in

SystemV terms)

•	 How to manually switch to a different target without

going through a reboot

•	 To use the systemctl command, which is the primary

means of interacting with and sending commands

to systemd

•	 To use journalctl, which provides access to the systemd

journals that contain huge amounts of system history

data such as kernel and service messages (both

informational and error messages)

https://doi.org/10.1007/979-8-8688-1328-3_3#DOI

68

�Overview
systemd’s startup provides important clues to help you solve problems

when they occur. In this chapter, we’ll start exploring the files and tools

that manage the Linux startup sequence. We’ll explore the systemd startup

sequence, how to change the default startup target (runlevel in SystemV

terms), and how to manually switch to a different target without going

through a reboot.

We’ll also look at two important systemd tools. The first is the systemctl

command, which is the primary means of interacting with and sending

commands to systemd. The second is journalctl, which provides access

to the systemd journals that contain huge amounts of system history

data such as kernel and service messages (both informational and error

messages).

Be sure to use a non-production system or VM for testing and

experimentation. Your test system needs to have a GUI desktop (such as

Xfce, LXDE, GNOME, KDE, or another) installed.

�Exploring Linux Startup with systemd
Before you can observe the startup sequence, you need to do a couple

of things to make the boot and startup sequences open and visible.

Normally, most distributions use a startup animation or splash screen

to hide the detailed messages that would otherwise be displayed during

a Linux host’s startup and shutdown. This is called the Plymouth boot

screen on Red Hat–based distros. Those hidden messages can provide

a great deal of information about startup and shutdown to a SysAdmin

looking for information to troubleshoot a bug or to just learn about the

startup sequence. You can change this using the GRUB (Grand Unified

Bootloader) configuration.

Chapter 3 Understanding Linux Startup with systemd

69

EXPERIMENT 3-1: MODIFY GRUB TO SHOW STARTUP MESSAGES

The main GRUB configuration file is /boot/grub2/grub.cfg, but, because this

file can be overwritten when the kernel version is updated, you do not want to

change it. Instead, modify the /etc/default/grub file, which is used to modify

the default settings of grub.cfg.

Start by looking at the current, unmodified version of the /etc/default/grub

file. Note that the three lines starting with the GRUB_CMDLINE_LINUX line is

wrapped in the listing shown here.

[root@testvm1 default]# cd /etc/default ; cat grub
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-
release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_testvm1-swap
\ rd.lvm.lv=fedora_testvm1/root rd.lvm.lv=fedora_testvm1/
swap \ rd.lvm.lv=fedora_testvm1/usr rhgb quiet"
GRUB_DISABLE_RECOVERY="true"
[root@testvm1 default]#

Chapter 6 of the GRUB documentation contains a list of all the possible entries

in the /etc/default/grub file, but I focus on the following two items:

• Change GRUB_TIMEOUT, the number of seconds for the GRUB menu

countdown, from five to ten to give a bit more time to respond to the GRUB

bootup menu before the countdown hits zero.

Chapter 3 Understanding Linux Startup with systemd

https://doi.org/10.1007/979-8-8688-1328-3_6

70

• Delete the last two parameters on GRUB_CMDLINE_LINUX, which lists the

command-line parameters that are passed to the kernel at boot time.

One of these parameters, rhgb, stands for Red Hat Graphical Boot, and it

displays the little Fedora icon animation during the kernel initialization instead

of showing boot-time messages. The other, the quiet parameter, prevents

displaying the startup messages that document the progress of the startup

and any errors that occur. I delete both rhgb and quiet because SysAdmins

need to see these messages. If something goes wrong during boot, the

messages displayed on the screen can point to the cause of the problem.

After you make these changes, your GRUB file will look like this:

[root@testvm1 default]# cat grub
GRUB_TIMEOUT=10
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-
release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="rd.lvm.lv=vg01/root rd.lvm.lv=vg01/usr
selinux=0"
GRUB_DISABLE_RECOVERY="false"
[root@testvm1 default]#

The grub2-mkconfig program generates the grub.cfg configuration file using

the contents of the /etc/default/grub file to modify some of the default GRUB

settings. The grub2-mkconfig program sends its output to STDOUT. It has a -o

option that allows you to specify a file to send the data stream to, but it is just

as easy to use redirection. Run the following command to update the /boot/

grub2/grub.cfg configuration file:

grub2-mkconfig > /boot/grub2/grub.cfg

Chapter 3 Understanding Linux Startup with systemd

71

Reboot your test system to view the startup messages that would otherwise be

hidden behind the Plymouth boot animation. But what if you need to view the

startup messages and have not disabled the Plymouth boot animation? Or you

have, but the messages stream by too fast to read? (Which they do.)

There are a couple of options, and both involve log files and systemd

journals—which are your friends. You can use the less command to view

the contents of the /var/log/messages file. This file contains boot and startup

messages as well as messages generated by the operating system during

normal operation. You can also use the journalctl command without any

options to view the systemd journal, which contains essentially the same

information:

journalctl
<SNIP>
Oct 20 18:13:45 david.both.org kernel: Linux version
6.11.3-200.fc40.x86_64 (mockbuild@4786ea1e4860458caf0f0f3344
c01d01) (gcc (GCC) 14.2.1 2024>
Oct 20 18:13:45 david.both.org kernel: Command line: BOOT_
IMAGE=(hd9,gpt2)/vmlinuz-6.11.3-200.fc40.x86_64 root=/dev/
mapper/vg01-root ro rd.lvm.>
Oct 20 18:13:45 david.both.org kernel: BIOS-provided
physical RAM map:
Oct 20 18:13:45 david.both.org kernel: BIOS-e820: [mem
0x0000000000000000-0x000000000009ffff] usable
Oct 20 18:13:45 david.both.org kernel: BIOS-e820: [mem
0x00000000000a0000-0x00000000000fffff] reserved
Oct 20 18:13:45 david.both.org kernel: BIOS-e820: [mem
0x0000000000100000-0x000000003bc91fff] usable
<SNIP>
Oct 20 18:13:45 david.both.org kernel: BIOS-e820: [mem
0x00000000fed00000-0x00000000fed00fff] reserved
Oct 20 18:13:45 david.both.org kernel: BIOS-e820: [mem
0x00000000fee00000-

Chapter 3 Understanding Linux Startup with systemd

72

Oct 20 18:13:45 david.both.org kernel: e820: update [mem
0x32bc8018-0x32bd8e57] usable ==> usable
Oct 20 18:13:45 david.both.org kernel: e820: update [mem
0x32baa018-0x32bc7257] usable ==> usable
Oct 20 18:13:45 david.both.org kernel: extended physical
RAM map:
Oct 20 18:13:45 david.both.org kernel: reserve setup_data:
[mem 0x0000000000000000-0x000000000009ffff] usable
<SNIP>
Oct 20 18:13:45 david.both.org kernel: tcp_listen_
portaddr_hash hash table entries: 32768 (order: 7, 524288
bytes, linear)
Oct 20 18:13:45 david.both.org kernel: Table-perturb hash
table entries: 65536 (order: 6, 262144 bytes, linear)
Oct 20 18:13:45 david.both.org kernel: TCP established hash
table entries: 524288 (order: 10, 4194304 bytes, linear)
Oct 20 18:13:45 david.both.org kernel: TCP bind hash table
entries: 65536 (order: 9, 2097152 bytes, linear)
Oct 20 18:13:45 david.both.org kernel: TCP: Hash tables
configured (established 524288 bind 65536)
<SNIP>

I truncated this data stream because it can be hundreds of thousands or

even millions of lines long. (The journal listing on my primary workstation is

1,399,459 lines long.) Explore this journal data on your test system because

it contains a lot of information that can be very useful when doing problem

determination. Knowing what this data looks like for a normal boot and startup

can help you locate problems when they occur.

We’ll explore more of the systemd journals, the journalctl command,

and how to sort through the data stream to find what you want in more

detail as we proceed through this book.

Chapter 3 Understanding Linux Startup with systemd

73

After GRUB loads the kernel into memory, it must first extract itself

from the compressed version of the file before it can perform any useful

work. After the kernel has extracted itself and started running, it loads

systemd and turns control over to it.

This is the end of the boot process. At this point, the Linux kernel and

systemd are running but unable to perform any productive tasks for the

end user because nothing else is running, there’s no shell to provide a

command line, no background processes to manage the network or other

communication links, and nothing that enables the computer to perform

any productive function.

systemd can now load the functional units required to bring the system

up to a selected target run state.

�Targets
A systemd target represents a Linux system’s current or desired run state.

Much like SystemV start scripts, targets define the services that must be

present for the system to run and be active in that state. Table 3-1 shows

the possible run-state targets of a Linux system using systemd. As seen in

Chapter 2, and in the systemd bootup man page (man bootup), there are

other intermediate targets that are required to enable various necessary

services. These can include swap.target, timers.target, local-fs.target, and

more. Some targets (like basic.target) are used as checkpoints to ensure

that all the required services are up and running before moving on to the

next higher-level target.

Unless otherwise changed at boot time in the GRUB menu, systemd

always starts the default.target. The default.target file is a symbolic link to

the true target file. For a desktop workstation, this is typically going to be

the graphical.target, which is equivalent to runlevel 5 in SystemV. For a

server, the default is more likely to be the multi-user.target, which is like

runlevel 3 in SystemV. The emergency.target file is similar to single-user

mode. Targets and services are systemd units.

Chapter 3 Understanding Linux Startup with systemd

https://doi.org/10.1007/979-8-8688-1328-3_2

74

Table 3-1 compares the systemd targets with the old SystemV startup

runlevels. The systemd target aliases are provided by systemd for backward

compatibility. The target aliases allow scripts—and SysAdmins—to use

SystemV commands like init 3 to change runlevels. SystemV commands

are forwarded to systemd for interpretation and execution.

Table 3-1.  Comparison of SystemV runlevels with systemd targets

and target aliases. Reproduced here for ease of reference

 systemd
Targets

SystemV
Runlevel

Target
Aliases

Description

default.

target

This target is always aliased with a symbolic

link to either multi-user.target or graphical.

target. systemd always uses the default.

target to start the system. The default.

target should never be aliased to halt.target,

poweroff.target, or reboot.target.

graphical.

target

5 runlevel5.

target

Multi-user.target with a GUI.

4 runlevel4.

target

Unused. Runlevel 4 was identical to runlevel

3 in the SystemV world. This target could be

created and customized to start local services

without changing the default multi-user.

target.

multi-user.

target

3 runlevel3.

target

Multi-user with all services running but

command-line interface (CLI) only.

2 runlevel2.

target

Multi-user, without NFS but all other non-GUI

services running.

(continued)

Chapter 3 Understanding Linux Startup with systemd

75

Table 3-1.  (continued)

 systemd
Targets

SystemV
Runlevel

Target
Aliases

Description

rescue.

target

1 runlevel1.

target

A basic system including mounting the

filesystems with only the most basic services

running and a rescue shell on the main

console.

emergency.

target

S No services are running; filesystems are

not mounted. This is the most basic level

of operation with only an emergency shell

running on the main console for the user to

interact with the system. Single-user mode in

SystemV.

halt.target Halts the system without powering it down.

reboot.

target

6 runlevel6.

target

Reboot.

poweroff.

target

0 runlevel0.

target

Halts the system and turns the power off.

Each target has a set of dependencies described in its configuration

file. systemd starts the required dependencies, which are the services

required to run the Linux host at a specific level of functionality. When all

of the dependencies listed in the target configuration files are loaded and

running, the system is running at that target level.

Chapter 3 Understanding Linux Startup with systemd

76

�Exploring the Current Target
Many Linux distributions default to installing a GUI desktop interface so

that the installed systems can be used as workstations. I always install from

a Fedora Live boot USB drive with an Xfce or LXDE desktop. Even when

I’m installing a server or other infrastructure type of host (such as the ones

I use for routers and firewalls), I use one of these installations that installs a

GUI desktop.

I could install a server without a desktop (and that would be typical for

data centers), but that does not meet my needs. It is not that I need the GUI

desktop itself, but the LXDE installation includes many of the other tools

I use that are not in a default server installation. This means less work for

me after the initial installation.

But just because I have a GUI desktop does not mean it makes sense

to use it. I have a 16-port KVM that I can use to access the KVM interfaces

of most of my Linux systems, but the vast majority of my interaction with

them is via a remote SSH connection from my primary workstation. This

is more secure, and it uses fewer system resources to run multi-user.target

compared to graphical.target.

EXPERIMENT 3-2: EXPLORING THE CURRENT TARGET

To begin, check the default target to verify that it is the graphical.target:

systemctl get-default
graphical.target

Now verify the currently running target. It should be the same as the default

target. You can still use the old method, which displays the old SystemV

runlevels. Note that the previous runlevel is on the left; it is N (which means

None), indicating that the runlevel has not changed since the host was booted.

The number 5 indicates the current target, as defined in the old SystemV

terminology:

Chapter 3 Understanding Linux Startup with systemd

77

runlevel
N 5
#

Note that the runlevel man page indicates that runlevels are obsolete and

provides a conversion table. You can also use the systemd method. There is no

one-line answer here, but it does provide the answer in systemd terms:

systemctl list-units --type target
UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active �Local

Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active �Graphical

Interface
local-fs-pre.target loaded active active �Local File

Systems (Pre)
local-fs.target loaded active active �Local

File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network.target loaded active active Network
nfs-client.target loaded active active �NFS client

services
nss-user-lookup.target loaded active active �User and Group

Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded active active �Remote File

Systems (Pre)
remote-fs.target loaded active active �Remote

File Systems

Chapter 3 Understanding Linux Startup with systemd

78

rpc_pipefs.target loaded active active rpc_pipefs.target
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sshd-keygen.target loaded active active �sshd-

keygen.target
swap.target loaded active active Swap
sysinit.target loaded active active �System

Initialization
timers.target loaded active active Timers

LOAD = Reflects whether the unit definition was
properly loaded.
ACTIVE = The high-level unit activation state, i.e.
generalization of SUB.
SUB = The low-level unit activation state, values depend
on unit type.

21 loaded units listed. Pass --all to see loaded but
inactive units, too.
To show all installed unit files use 'systemctl list-
unit-files'.

This shows all of the currently loaded and active targets. You can also see the

graphical.target and the multi-user.target. The multi-user.target is required

before the graphical.target can be loaded. In this example, the graphical.target

is active.

�Switching to a Different Target
There are times when I’ve needed to change the running target while the

host is running. This doesn’t change the default target, and the system will

start the default target the next time it’s rebooted.

Chapter 3 Understanding Linux Startup with systemd

79

EXPERIMENT 3-3: CHANGING TARGETS

Making the switch to the multi-user.target is easy using the isolate sub-

command. That seems like a strange word for this sub-command, but it’s what

we have.

systemctl isolate multi-user.target

The display should now change from the GUI desktop or login screen to a

virtual console. Log in and list the currently active systemd units to verify that

graphical.target is no longer running:

systemctl list-units --type target

Be sure to use the runlevel command to verify that it shows both previous and

current “runlevels”:

runlevel
5 3

You could still use the init command to change “runlevels.”

�Changing the Default Target
Now, change the default target to the multi-user.target so that it will always

boot into the multi-user.target for a console command-line interface rather

than a GUI desktop interface.

Chapter 3 Understanding Linux Startup with systemd

80

EXPERIMENT 3-4: CHANGING THE DEFAULT TARGET

As the root user on your test host, change to the directory where the systemd

configuration is maintained and do a quick listing:

cd /etc/systemd/system/ ; ll
total 60
lrwxrwxrwx. 1 root root 9 Jun 10 13:58 abrtd.service ->
/dev/null
lrwxrwxrwx. 1 root root 9 Jun 10 13:58 abrt-journal-
core.service -> /dev/null
lrwxrwxrwx. 1 root root 9 Jun 10 13:58 abrt-oops.service
-> /dev/null
lrwxrwxrwx. 1 root root 9 Jun 10 13:58 abrt-xorg.service
-> /dev/null
<SNIP>
lrwxrwxrwx. 1 root root 40 Jun 10 11:26 default.target ->
/usr/lib/systemd/system/graphical.target
drwxr-xr-x. 2 root root 4096 Apr 14 2024 'dev-virtio\
x2dports-org.qemu.guest_agent.0.device.wants'
lrwxrwxrwx. 1 root root 39 Jun 10 14:00 display-manager.
service -> /usr/lib/systemd/system/lightdm.service
drwxr-xr-x. 2 root root 4096 Apr 14 2024 getty.target.wants
drwxr-xr-x. 2 root root 4096 Aug 24 09:20 graphical.
target.wants
drwxr-xr-x. 2 root root 4096 Aug 27 08:13 multi-user.
target.wants
drwxr-xr-x. 2 root root 4096 Apr 14 2024 network-online.
target.wants
drwxr-xr-x. 2 root root 4096 Apr 14 2024 remote-fs.
target.wants

Chapter 3 Understanding Linux Startup with systemd

81

drwxr-xr-x. 2 root root 4096 Apr 14 2024 sockets.
target.wants
drwxr-xr-x. 2 root root 4096 Jun 10 13:46 sysinit.
target.wants
drwxr-xr-x. 2 root root 4096 Jun 10 13:57 sysstat.
service.wants
drwxr-xr-x. 2 root root 4096 Apr 14 2024 systemd-homed.
service.wants
drwxr-xr-x. 2 root root 4096 Apr 14 2024 systemd-journald.
service.wants
drwxr-xr-x. 2 root root 4096 Apr 14 2024 timers.
target.wants
drwxr-xr-x 2 root root 4096 Aug 24 09:21 user@.
service.wants
drwxr-xr-x. 2 root root 4096 Apr 14 2024 vmtoolsd.service.
requires
root@testvm1:/etc/systemd/system#

I shortened this listing to highlight a few important things that will help explain

how systemd manages the boot process. You should be able to see the entire

list of directories and links on your virtual machine. The default.target entry

is a symbolic link (symlink, soft link) to the directory /lib/systemd/system/

graphical.target. List that directory to see what else is there:

ll /lib/systemd/system/ | less

You should see files, directories, and more links in this listing, but look

specifically for multi-user.target and graphical.target. Now display the contents

of default.target, which is a link to /lib/systemd/system/graphical.target:

cat default.target
SPDX-License-Identifier: LGPL-2.1-or-later
#

Chapter 3 Understanding Linux Startup with systemd

82

This file is part of systemd.
#
systemd is free software; you can redistribute it and/or
modify it
under the terms of the GNU Lesser General Public License
as published by
the Free Software Foundation; either version 2.1 of the
License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target
display-manager.service
AllowIsolate=yes

This link to the graphical.target file describes all of the prerequisites and

requirements that the graphical user interface requires. We’ll explore at least

some of these options in future articles. To enable the host to boot to multi-

user mode, you need to delete the existing link and create a new one that

points to the correct target. Make the PWD /etc/systemd/system, if it is not

already:

rm -f default.target
ln -s /lib/systemd/system/multi-user.target default.target
List the default.target link to verify that it links to the
correct file:
ll default.target

Chapter 3 Understanding Linux Startup with systemd

83

lrwxrwxrwx 1 root root 37 Nov 28 16:08 default.target ->
/lib/systemd/system/multi-user.target

List the content of the default.target link:

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or
modify it
under the terms of the GNU Lesser General Public License
as published by
the Free Software Foundation; either version 2.1 of the
License, or
(at your option) any later version.

[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes

If your link does not look exactly like this, delete it and try again.

The default.target—which is really a link to the multi-user.target at this

point—now has different requirements in the [Unit] section. It does not require

the graphical display manager.

Chapter 3 Understanding Linux Startup with systemd

84

Reboot your virtual machine which should boot to the console login for virtual

console 1, which is identified on the display as tty1. Now that you know how

to change the default target, change it back to the graphical.target using the

command designed for the purpose.

First, check the current default target, then set the graphical.target as the

default.

systemctl get-default
multi-user.target
systemctl set-default graphical.target
Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target → /usr/
lib/systemd/system/graphical.target.

Enter the following command to go directly to the graphical.target and the

display manager login page without having to reboot:

systemctl isolate default.target

I do not know why the term “isolate” was chosen for this sub-command by

systemd’s developers. My research indicates that it may refer to running the

specified target but “isolating” and terminating all other targets that are not

required to support the target. However, the effect is to switch targets from

one run target to another—in this case, from the multi-user target to the

graphical target. The command above is equivalent to the old init 5 command

in SystemV start scripts and the init program.

Log in to the GUI desktop, and verify that it is working as it should.

Chapter 3 Understanding Linux Startup with systemd

85

�Summary
In this chapter, we explored the Linux systemd startup sequence and

started to work with two important systemd tools, systemctl and journalctl.

We also learned how to switch from one target to another and to change

the default target.

�Exercises
Perform these exercises to complete this chapter:

	 1.	 Which file did you use to configure GRUB2 and why?

	 2.	 What is the function of GRUB2?

	 3.	 What is the default target?

	 4.	 Change the default target to rescue.target and

reboot the computer.

	 5.	 Can you change to the multi-user.target without

changing the default?

	 6.	 Change the default target to graphical.target

and reboot.

	 7.	 Why might you use the computer in rescue.target?

	 8.	 Why might you run the computer in multi-

user.target?

Chapter 3 Understanding Linux Startup with systemd

87© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_4

CHAPTER 4

How to Manage
Startup Using
systemd

�Objectives
In this chapter, you will learn

•	 How systemd determines the order services start, even

though it is a massively parallel system

•	 To use systemd tools to create a new systemd unit that

runs a simple program at startup time

•	 To use the boot messages to view text added by the new

program and service unit

•	 To use journalctl to view the messages created by

the start and end of the new service unit and the

program output

•	 To configure service units to start at specific stages of

the Linux systemd startup

https://doi.org/10.1007/979-8-8688-1328-3_4#DOI

88

�Overview
While setting up a new Linux system recently, I wanted to know how

to ensure that dependencies for services and other units were up and

running before those dependent services and units start. Specifically, I

needed more knowledge of how systemd manages the startup sequence,

especially in determining the order services are started in what is

essentially a parallel system.

You may know that SystemV orders the startup sequence by naming

the startup scripts with an SXX prefix, where XX is a number from 00 to

99. SystemV then uses the Linux natural sort order by name and runs each

start script in alphanumerical sequence for the desired runlevel.

But systemd uses unit files, which can be created or modified by a

SysAdmin, to define subroutines for not only initialization but also for

regular operation. We’ll create a service unit file that runs a simple test

program at startup. You can also change certain configuration settings

in the unit file and use the systemd journal to view the location of your

changes in the startup sequence.

�Preparation
Make sure you have removed rhgb and quiet from the GRUB_CMDLINE_

LINUX= line in the /etc/default/grub file, as we did in Experiment 3-1. This

enables you to observe the Linux startup message stream, which you’ll

need for some of the experiments in this chapter.

Also, ensure that SELinux won’t prevent the shell script we’ll create

from running. Verify the current SELinux status so you can restore that

status at the end of this chapter.

sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux

Chapter 4 How to Manage Startup Using systemd

89

SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 33

If SELinux is in enforcing mode, run the following command to set

SELinux to permissive:

setenforce Permissive

�The Program
In this experiment, you will create a simple program that enables you to

observe a message during startup on the console and later in the systemd

journal.

EXPERIMENT 4-1: CREATE THE PROGRAM

Create the shell program /usr/local/bin/hello.sh and add the following content.

We want to ensure that the output resulting from this little program is visible

during startup and that you can easily find it when looking through the

systemd journal. You will use a version of the “Hello world” program with some

bars around it, so it stands out. Make sure the file is executable and has user

and group ownership by root with 700 permissions for security.

#!/usr/bin/bash
Simple program to use for testing startup configurations
with systemd.
Copyright David Both, 2025

Chapter 4 How to Manage Startup Using systemd

90

GNU All-Permissive License:
Copying and distribution of this file, with or without
modification, are permitted in any medium without royalty
provided the copyright notice and this notice are
preserved.
This file is offered as-is, without any warranty.

echo "###############################"
echo "######### Hello World! ########"
echo "###############################"

Run this program from the command line to verify that it works correctly.

hello.sh
###############################
######### Hello World! ########
###############################

This program could be created in any scripting or compiled language. The

hello.sh program could also be located in other places based on the Linux

filesystem hierarchical structure (FHS). I place it in the /usr/local/bin directory

so that it can be easily run from the command line without having to prepend

a path when I type the command.

I find that many of the shell programs I create need to be run from the

command line and by other tools such as systemd.

�The Service Unit
Before we create our service unit, let’s explore what a service unit is and

how it relates to getting a Linux host up and running.

Chapter 4 How to Manage Startup Using systemd

91

A unit is “a service, a socket, a device, a mount point, an automount

point, a swap file or partition, a start-up target, a watched file system path,

a timer controlled and supervised by systemd, a resource management

slice or a group of externally created processes”—the systemd.unit

man page.

A unit file is a plain-text ini-style file that contains data that

defines a unit.

And a service unit file defines the type of service unit being created,

how it’s used, the programs it runs, and the systemd target that it’s

triggered or started by.

There are eight service types, and you can find an explanation of

each (along with the other parts of a service unit file) in the systemd.

service(5) man page. Kernel and service developers are the usual users of

system types.

These are typically only used by SysAdmins when creating a new

service unit file for local use such as the oneshot service, timers, and

mounts. The types I use most frequently are simple, exec, oneshot, and

dbus. We’ll explore each of those in this book. We’ve already seen the

oneshot type in Chapter 3.

Table 4-1 lists all eight service types with a brief explanation of each.

Chapter 4 How to Manage Startup Using systemd

https://doi.org/10.1007/979-8-8688-1328-3_3

92

Table 4-1.  The eight types of systemd services

Service Type Description

simple This is the default type. systemd assumes the unit is to be started

immediately after the program has begun executing. This is usually

the main process of the program.

exec Similar to simple, but systemd considers the unit started

immediately after the main service binary has been executed. The

service manager will delay starting of follow-up units until that

point. Note that this means systemctl start command lines for exec

services will report failure when the service's binary cannot be

invoked successfully.

forking systemd considers the unit started immediately after the binary

that forked off by the manager exits. The use of this type is

discouraged; use notify, notify-reload, or dbus instead.

oneshot Similar to simple; however, the service manager will consider the

unit up after the main process exits. It will then start follow-up units.

dbus Similar to simple; however, units of this type must have the

BusName= specified, and the service manager will consider the

unit up when the specified bus name has been acquired.

notify Similar to exec; however, it is expected that the service sends a

“READY=1” notification message via sd_notify(3) or an equivalent

call when it has finished starting up. systemd will proceed with

starting follow-up units after this notification message has been

sent.

(continued)

Chapter 4 How to Manage Startup Using systemd

93

Table 4-1.  (continued)

Service Type Description

notify-

reload

Similar to notify, with one difference: the SIGHUP UNIX process

signal is sent to the service's main process when the service is

asked to reload, and the manager will wait for a notification about

the reload being finished.

idle Similar to simple; however, actual execution of the service program

is delayed until all active jobs are dispatched. This may be used to

avoid interleaving of output of shell services with the status output

on the console. Note that this type is useful only to improve console

output; it is not useful as a general unit ordering tool.

You can find more information in the resources at the end of this

chapter.

�Creating the Service Unit
Service unit files use the form and structure of standard ini files.

Commands start with a pound sign (#), and section names are enclosed

in [square brackets]. Our unit file is about the most simple possible. It has

three sections:

•	 [unit]: This is a short description of the unit used as an

identifier for us SysAdmins. It will appear in systemd

status reports for the service.

•	 [Service]: Defines the type of unit as a service and

provides the service type, oneshot in this instance, and

the fully qualified path to the program to run.

Chapter 4 How to Manage Startup Using systemd

94

•	 [Install]: Specifies the target unit that will trigger the

service unit. The oneshot type is intended for services

where the program launched by the service unit file is

the main process and must complete before systemd

starts any dependent process. We don’t have any

dependent processes that need to wait for this one to

complete.

EXPERIMENT 4-2: CREATE THE SERVICE UNIT

Create the service unit file /usr/local/lib/systemd/system/hello.service with the

following content. This is a location explicitly specified by the Linux Filesystem

Hierarchical Standard1 to be used for locally created system files. systemd

checks this directory for those local files.

This file does not need to be executable, but for security, it does need user and

group ownership by root and 754 permissions.

Simple service unit file to use for testing
startup configurations with systemd.
Copyright David Both, 2025

GNU All-Permissive License:
Copying and distribution of this file, with or without
modification, are permitted in any medium without royalty
provided the copyright notice and this notice are
preserved.
This file is offered as-is, without any warranty.
#

1 Both, David, The Linux Philosophy for SysAdmins, Tenet 04 — Use the Linux FHS,
https://www.both.org/?p=6982

Chapter 4 How to Manage Startup Using systemd

https://www.both.org/?p=6982

95

[Unit]
Description=My hello shell script

[Service]
Type=oneshot
ExecStart=/usr/local/bin/hello.sh

[Install]
WantedBy=multi-user.target

You can verify the logic and syntax of the service unit.

systemd-analyze verify /etc/systemd/system/hello.service

Adhering to the Linux philosophy tenet, “silence is golden,” a lack of output

messages means that there are no errors in the scanned file.

You can also verify that the service unit file performs as expected by viewing

the service status. Any syntactical errors will also show up here.

systemctl status hello.service
⚬ hello.service - My hello shell script
 Loaded: �loaded (/etc/systemd/system/hello.service;

disabled; preset: disabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf
 Active: inactive (dead)
[root@testvm1 ~]#

As curious as I am, I wanted to see what an error might look like. So, I deleted

the “o” from the Type=oneshot line, so it looked like Type=neshot, and ran the

command again:

systemctl status hello.service
⚬ hello.service - My hello shell script

Chapter 4 How to Manage Startup Using systemd

96

 Loaded: �loaded (/usr/local/lib/systemd/system/hello.
service; disabled; preset: disabled)

 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf
 Active: inactive (dead)

Oct 28 06:51:44 testvm1.both.org systemd[1]: /usr/local/lib/
systemd/system/hello.service:11: Failed to parse service
type, ignoring: neshot
root@testvm1:~#

These results told me precisely where the error was and made it very easy to

resolve the problem.

Be aware that even after you restore the hello.service file to its original form,

the error reports will persist. These are part of the journal and represent the

historical error reports. Be sure to examine the timestamps to determine the

age of the errors. So long as no new errors are reported, everything is good.

Run the command systemctl daemon-reload after changing a unit file or

creating a new one. This notifies systemd that the changes have been made,

and it can prevent certain types of issues with managing altered services or

units. Run this command now.

Experiment a bit by introducing some other errors into the hello.service file to

see what kinds of results you get.

�Start the Service
Now you are ready to start the new service and check the status to see the

result. You can start or restart a oneshot service as many times as you want

since it runs once and then exits.

Chapter 4 How to Manage Startup Using systemd

97

EXPERIMENT 4-3: STARTING THE SERVICE

We will not enable the service for now, just start it so that it will run once each

time we start it. You can run this “oneshot” service type multiple times without

problems.

Start the service (as shown below), and then check the status. Depending

upon how much you experimented with errors, your results may differ from

mine, and the timestamps will be different.

systemctl start hello.service
systemctl status hello.service
⚬ hello.service - My hello shell script
 Loaded: �loaded (/usr/local/lib/systemd/system/hello.

service; disabled; preset: disabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf
 Active: inactive (dead)

Oct 29 06:33:09 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]:
###############################
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]: #########
Hello World! ########
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]:
###############################
Oct 29 06:33:09 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 29 06:33:09 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.

Chapter 4 How to Manage Startup Using systemd

98

Notice in the status command’s output that the systemd messages indicate

that the hello.sh script started and the service completed. You can also see the

output from the script. This display is generated from the journal entries of the

most recent invocations of the service. Try starting the service several times,

and then run the status command again to see what I mean.

You can also look at the journal contents directly. There are multiple ways to

do this. One way is to specify the record type identifier, in this case, the name

of the shell script. I rebooted while writing this section, so this shows the

journal entries for previous reboots as well as the current session.

journalctl -t hello.sh
Oct 27 17:58:11 testvm1.both.org hello.sh[128976]:
###############################
Oct 27 17:58:11 testvm1.both.org hello.sh[128976]: #########
Hello World! ########
Oct 27 17:58:11 testvm1.both.org hello.sh[128976]:
###############################
Oct 27 17:58:12 testvm1.both.org hello.sh[128980]:
###############################
Oct 27 17:58:12 testvm1.both.org hello.sh[128980]: #########
Hello World! ########
Oct 27 17:58:12 testvm1.both.org hello.sh[128980]:
###############################
-- Boot e257de57d9e2430ca25873e18a1d628b --
Oct 28 06:53:33 testvm1.both.org hello.sh[1632]:
###############################
Oct 28 06:53:33 testvm1.both.org hello.sh[1632]: #########
Hello World! ########
Oct 28 06:53:33 testvm1.both.org hello.sh[1632]:
###############################
Oct 28 06:54:31 testvm1.both.org hello.sh[1638]:
###############################

Chapter 4 How to Manage Startup Using systemd

99

Oct 28 06:54:31 testvm1.both.org hello.sh[1638]: #########
Hello World! ########
Oct 28 06:54:31 testvm1.both.org hello.sh[1638]:
###############################
Oct 28 06:54:31 testvm1.both.org hello.sh[1642]:
###############################
Oct 28 06:54:31 testvm1.both.org hello.sh[1642]: #########
Hello World! ########
Oct 28 06:54:31 testvm1.both.org hello.sh[1642]:
###############################
Oct 28 06:54:33 testvm1.both.org hello.sh[1646]:
###############################
Oct 28 06:54:33 testvm1.both.org hello.sh[1646]: #########
Hello World! ########
Oct 28 06:54:33 testvm1.both.org hello.sh[1646]:
###############################
-- Boot d04572266a83472a929037300b9ae756 --
Oct 28 07:03:21 testvm1.both.org hello.sh[1509]:
###############################
Oct 28 07:03:21 testvm1.both.org hello.sh[1509]: #########
Hello World! ########
Oct 28 07:03:21 testvm1.both.org hello.sh[1509]:
###############################
Oct 28 07:03:22 testvm1.both.org hello.sh[1513]:
###############################
Oct 28 07:03:22 testvm1.both.org hello.sh[1513]: #########
Hello World! ########
Oct 28 07:03:22 testvm1.both.org hello.sh[1513]:
###############################
Oct 29 06:31:45 testvm1.both.org hello.sh[130958]:
###############################

Chapter 4 How to Manage Startup Using systemd

100

Oct 29 06:31:45 testvm1.both.org hello.sh[130958]: #########
Hello World! ########
Oct 29 06:31:45 testvm1.both.org hello.sh[130958]:
###############################
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]:
###############################
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]: #########
Hello World! ########
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]:
###############################

To locate the systemd records for the hello.service unit, you can search on

systemd. You can use SHIFT+G to page to the end of the journal entries and

then scroll back to locate the ones you are interested in. Use the -b option to

show only the entries for the most recent boot.

journalctl -b -t systemd
<snip>
Oct 29 06:31:45 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:31:45 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 29 06:31:45 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.
Oct 29 06:32:44 testvm1.both.org systemd[1]: Starting
packagekit.service - PackageKit Daemon...
Oct 29 06:32:44 testvm1.both.org systemd[1]: Started
packagekit.service - PackageKit Daemon.
Oct 29 06:33:09 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:33:09 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.

Chapter 4 How to Manage Startup Using systemd

101

Oct 29 06:33:09 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.

I kept the other journal entries to give you an idea of what you might find. This

command spews all of the journal lines pertaining to systemd—109,183 lines

when I wrote this. Fortunately, the entries for our new service are at the end

of the data stream. Use uppercase “G” to take the pager to the end of the data

stream. You could use the pager’s search facility, which is usually less, or you

can use the built-in grep feature. The -g (or --grep=) option uses Perl-

compatible regular expressions:

journalctl -b -t systemd -g "hello"
Oct 28 07:03:14 testvm1.both.org systemd[1]: Configuration
file /usr/local/lib/systemd/system/hello.service is marked
executable. Please remove ex>
Oct 28 07:03:14 testvm1.both.org systemd[1]: Configuration
file /usr/local/lib/systemd/system/hello.service is marked
executable. Please remove ex>
Oct 28 07:03:21 testvm1.both.org systemd[1]: Configuration
file /usr/local/lib/systemd/system/hello.service is marked
executable. Please remove ex>
Oct 28 07:03:21 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 28 07:03:21 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 28 07:03:21 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.
Oct 28 07:03:22 testvm1.both.org systemd[1]: Configuration
file /usr/local/lib/systemd/system/hello.service is marked
executable. Please remove ex>
Oct 28 07:03:22 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...

Chapter 4 How to Manage Startup Using systemd

102

Oct 28 07:03:22 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 28 07:03:22 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.
Oct 28 07:03:24 testvm1.both.org systemd[1]: Configuration
file /usr/local/lib/systemd/system/hello.service is marked
executable. Please remove ex>
Oct 28 07:03:24 testvm1.both.org systemd[1]: Configuration
file /usr/local/lib/systemd/system/hello.service is marked
executable. Please remove ex>
Oct 29 06:31:45 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:31:45 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 29 06:31:45 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.
Oct 29 06:33:09 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:33:09 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 29 06:33:09 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.

You could use the standard GNU grep command, but that would not show the

log metadata in the first line.

Notice the error messages in the lines from October 28 indicating I had

the hello.service file set as executable. I fixed that so that the lines from

October 29 don’t contain those error messages. This is a good illustration

why we should check the logs and journals because they have a lot of good

information that can help us to ensure that things are configured correctly.

Chapter 4 How to Manage Startup Using systemd

103

You can narrow things down a bit by specifying a date and time range. For

example, I will start with a time just before the minute the entries above are

from. Note that the --since= option must be enclosed in quotes and that this

option can also be expressed as -S “<time specification>”.

The date and time will be different on your host, so be sure to use the

timestamps that match the times in your journals.

journalctl --since="2024-10-29 06:30:00"

The since specification skips all of the entries before that time, but there

may be a lot of entries after that time that you don’t need. You can also use

the until option to trim off the entries that come a bit after the time you are

interested in. I want the entire time when the event occurred and as little more

as possible.

journalctl --since="2024-10-29 06:30:00"
--until="2024-10-29 06:33:10"

If there were a lot of activity in this time period, you could further narrow

the resulting data stream using a combination with the -u option to specify

the unit.

journalctl --since="2024-10-29 06:30:00"
--until="2024-10-29 06:33:10" -u hello

Oct 29 06:31:45 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:31:45 testvm1.both.org hello.sh[130958]:
###############################
Oct 29 06:31:45 testvm1.both.org hello.sh[130958]: #########
Hello World! ########
Oct 29 06:31:45 testvm1.both.org hello.sh[130958]:
###############################

Chapter 4 How to Manage Startup Using systemd

104

Oct 29 06:31:45 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 29 06:31:45 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.
Oct 29 06:33:09 testvm1.both.org systemd[1]: Starting hello.
service - My hello shell script...
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]:
###############################
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]: #########
Hello World! ########
Oct 29 06:33:09 testvm1.both.org hello.sh[130983]:
###############################
Oct 29 06:33:09 testvm1.both.org systemd[1]: hello.service:
Deactivated successfully.
Oct 29 06:33:09 testvm1.both.org systemd[1]: Finished hello.
service - My hello shell script.
#

Your results should be similar to mine. You can see from this series of

experiments that the service executed properly.

�Reboot—Finally
So far, you have not rebooted the host where you installed your service.

So we’ll do that now because, after all, this is about running a program at

startup.

Chapter 4 How to Manage Startup Using systemd

105

EXPERIMENT 4-4: EXPLORING THE REBOOT

First, you need to enable the service to launch during the startup sequence:

systemctl enable --now hello.service
Created symlink /etc/systemd/system/multi-user.target.wants/
hello.service → /usr/local/lib/systemd/system/hello.service.
#

Notice that the link was created in the /etc/systemd/system/multi-user.target.

wants directory. This is because the service unit file specifies that the service

is “wanted” by the multi-user.target.

Reboot, and be sure to watch the data stream during the startup sequence

to see the “Hello world” message. Wait … you did not see it? Well, neither

did I. Although it went by very fast, I did see systemd’s message that it was

starting the hello.service.

Look at the journal since the latest system boot. You can use the less pager’s

search tool to find “Hello” or “hello,” to get a feel for what the entries

pertaining to your service look like.

journalctl -b

You can see that systemd started the hello.service unit, which ran the hello.sh

shell script with the output recorded in the journal. If you were able to catch

it during boot, you would also have seen the systemd message indicating

that it was starting the script and another message indicating that the service

succeeded. By looking at the first systemd message in the data stream above,

you can see that systemd started your service very soon after reaching the

basic system target.

I would like to see the message displayed at startup as well. There is a way to

make that happen. Add the following line to the [Service] section of the hello.

service file:

Chapter 4 How to Manage Startup Using systemd

106

StandardOutput=journal+console

The hello.service file now looks like this:

Simple service unit file to use for testing
startup configurations with systemd.
By David Both
Licensed under GPL V2
#

[Unit]
Description=My hello shell script

[Service]
Type=oneshot
ExecStart=/usr/local/bin/hello.sh
StandardOutput=journal+console

[Install]
WantedBy=multi-user.target

After adding this line, reboot the system, and watch the data stream as it

scrolls up the display during the boot process. You should see the message

in its little box. After the startup sequence completes, view the journal for the

most recent boot and locate the entries for your new service.

�Changing the Sequence
Now that your service is working, you can look at where it starts in the

startup sequence and experiment with changing it. It’s important to

remember that systemd’s intent is to start as many services and other unit

types in parallel within each of the major targets: basic.target, multi-

user.target, and graphical.target. You have just seen the journal entries

for the most recent boot, which should look similar to my journal in the

output above.

Chapter 4 How to Manage Startup Using systemd

107

systemd started your test service soon after it reached the target basic

system. This is what you specified in the service unit file in the WantedBy

line, so it is correct.

EXPERIMENT 4-5: CHANGE THE SEQUENCE IN WHICH HELLO.
SERVICE STARTS

Before you change anything, list the contents of the /etc/systemd/system/

multi-user.target.wants directory, and you will see a symbolic (soft) link to the

service unit file. The [Install] section of the service unit file specifies which

target will start the service, and running the systemctl enable hello.service

command creates the link in the appropriate “target wants” directory.

hello.service -> /usr/local/lib/systemd/system/hello.service

Certain services need to start during the basic.target, and others do not need

to start unless the system is starting the graphical.target. Let’s assume we

don’t need our service to start until the graphical.target.

Disable the hello.service to remove the old link from the multi-user.target.

wants directory, then change the WantedBy line to this:

WantedBy=graphical.target

Re-enable the service to add the new link in the graphical.targets.wants

directory. I have noticed that if I forget to disable the service before changing

the target that wants it, I can run the systemctl disable command, and the

links will be removed from both “target wants” directories. Then, I just need to

re-enable the service and reboot.

One concern with starting services in the graphical.target is that if the host

boots to multi-user.target, this service will not start automatically. That may be

what you want if the service requires a GUI desktop interface, but it also may

not be what you want.

Chapter 4 How to Manage Startup Using systemd

108

Look at the journal entries for the graphical.target and the multi-user.target

using the -o short-monotonic option that displays the number of seconds

after kernel startup with microsecond precision.

journalctl -b -o short-monotonic

Some results for multi-user.target. The times on your test system will be

different from mine.

[17.264730] testvm1.both.org systemd[1]: Starting My
hello shell script...
[17.265561] testvm1.both.org systemd[1]: Starting IPv4
firewall with iptables...
<SNIP>
[19.478468] testvm1.both.org systemd[1]: Starting LSB:
Init script for live image....
[19.507359] testvm1.both.org iptables.init[844]: iptables:
Applying firewall rules: [OK]
[19.507835] testvm1.both.org hello.sh[843]:
###############################
[19.507835] testvm1.both.org hello.sh[843]: #########
Hello World! ########
[19.507835] testvm1.both.org hello.sh[843]:
###############################
<SNIP>
[21.482481] testvm1.both.org systemd[1]: hello.service:
Succeeded.
[21.482550] testvm1.both.org smartd[856]: Opened
configuration file /etc/smartmontools/smartd.conf
[21.482605] testvm1.both.org systemd[1]: Finished My
hello shell script.

Chapter 4 How to Manage Startup Using systemd

109

And some results for graphical.target:

[19.436815] testvm1.both.org systemd[1]: Starting My
hello shell script...
[19.437070] testvm1.both.org systemd[1]: Starting IPv4
firewall with iptables...
<SNIP>
[19.612614] testvm1.both.org hello.sh[841]:
###############################
[19.612614] testvm1.both.org hello.sh[841]: #########
Hello World! ########
[19.612614] testvm1.both.org hello.sh[841]:
###############################
[19.629455] testvm1.both.org audit[1]: SERVICE_START
pid=1 uid=0 auid=4294967295 ses=4294967295 msg='unit=hello
comm="systemd" exe="/usr/lib/systemd/systemd" hostname=?
addr=? terminal=? res=success'
[19.629569] testvm1.both.org audit[1]: SERVICE_STOP
pid=1 uid=0 auid=4294967295 ses=4294967295 msg='unit=hello
comm="systemd" exe="/usr/lib/systemd/systemd" hostname=?
addr=? terminal=? res=success'
[19.629682] testvm1.both.org systemd[1]: hello.service:
Succeeded.
[19.629782] testvm1.both.org systemd[1]: Finished My
hello shell script.

Despite having the graphical.target “want” in the unit file, the hello.service

unit runs about 19.5 or 19.6 seconds into startup. But hello.service starts

at about 17.24 seconds in the multi-user.target and 19.43 seconds in the

graphical target.

Chapter 4 How to Manage Startup Using systemd

110

What does this mean? Look at the /etc/systemd/system/default.target link.

The contents of that file show that systemd first starts the default target—the

graphical.target—which then pulls in the multi-user.target.

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or
modify it
under the terms of the GNU Lesser General Public License
as published by
the Free Software Foundation; either version 2.1 of the
License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target
display-manager.service
AllowIsolate=yes
[root@testvm1 system]#

Whether it starts the service with the graphical.target or the multi-user.

target, the hello.service unit runs at about 19.5 or 19.6 seconds into startup.

Based on this and the journal results (especially the ones using the monotonic

output), you know that both of these targets are starting in parallel. Look at

one more thing from the journal output.

Chapter 4 How to Manage Startup Using systemd

111

[28.397330] testvm1.both.org systemd[1]: Reached target
Multi-User System.
[28.397431] testvm1.both.org systemd[1]: Reached target
Graphical Interface.

Both targets finish at almost the same time. This is consistent because the

graphical.target pulls in the multi-user.target and cannot finish until the multi-

user.target is reached, that is, finished. But hello.service finishes much earlier

than this.

What all this means is that these two targets start up pretty much in parallel. If

you explore the journal entries, you will see various targets and services from

each of those primary targets starting mostly in parallel. It is clear that the

multi-user.target does not need to complete before the graphical.target starts.

Therefore, simply using these primary targets to sequence the startup does

not work very well, although it can be useful for ensuring that units are started

only when they are needed for the graphical.target.

Before continuing, revert the hello.service unit file to WantedBy=multi-

user.target.

�Ensure a Service Starts After the Network
Is Running
One common startup sequence issue is ensuring that a unit starts after

the network is up and running. This article at systemd.io, “Network

Configuration Synchronization Points,”2 says there is no real consensus

on when a network is considered “up.” However, the article provides three

options, and the one that meets the needs of a fully operational network

2 systemd.io, “Network Configuration Synchronization Points,” https://systemd.
io/NETWORK_ONLINE/

Chapter 4 How to Manage Startup Using systemd

https://systemd.io/NETWORK_ONLINE/
https://systemd.io/NETWORK_ONLINE/

112

is network-online.target. Also, be aware that network.target is used during

shutdown rather than startup, so it will not do you any good when you are

trying to sequence the startup.

Our hello.service doesn’t really require the network service, but we

can use it as a test for one that does. Because setting WantedBy=graphical.

target does not ensure that the service will be started after the network is

up and running, you need another way to ensure that it is. Fortunately,

there is an easy way to do this.

EXPERIMENT 4-6: ENSURE THAT A SERVICE STARTS AFTER
THE NETWORK IS ACTIVE

Before making any other changes, be sure to examine the journal and verify

that the hello.service unit starts well before the network. You can look for the

network-online.target in the journal to check.

Add the following two lines to the [Unit] section of the hello.service unit file:

After=network-online.target
Wants=network-online.target

Both of these entries are required to make this work. Reboot your test host and

look for the entries for your service in the journals. I’ve included some of the

NetworkManager entries to verify that hello.service starts after it.

<SNIP>
[26.083349] testvm1.both.org NetworkManager[842]:
<info> [1589227764.0301] manager: NetworkManager state is
now CONNECTED_GLOBAL
[26.085818] testvm1.both.org NetworkManager[842]:
<info> [1589227764.0331] manager: startup complete
[26.089911] testvm1.both.org systemd[1]: Finished Network
Manager Wait Online.

Chapter 4 How to Manage Startup Using systemd

113

[26.090254] testvm1.both.org systemd[1]: Reached target
Network is Online.
[26.090399] testvm1.both.org audit[1]: SERVICE_
START pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit=NetworkManager-wait-online comm="systemd" exe="/
usr/lib/systemd/systemd" hostname=? addr=? termina>"'
[26.091991] testvm1.both.org systemd[1]: Starting My
hello shell script...
[26.095864] testvm1.both.org sssd[be[implicit_files]]
[1007]: Starting up
[26.290539] testvm1.both.org systemd[1]: Condition check
resulted in Login and scanning of iSCSI devices being
skipped.
[26.291075] testvm1.both.org systemd[1]: Reached target
Remote File Systems (Pre).
[26.291154] testvm1.both.org systemd[1]: Reached target
Remote File Systems.
[26.292671] testvm1.both.org systemd[1]: Starting Notify
NFS peers of a restart...
[26.294897] testvm1.both.org systemd[1]: iscsi.service:
Unit cannot be reloaded because it is inactive.
[26.304682] testvm1.both.org hello.sh[1010]:
###############################
[26.304682] testvm1.both.org hello.sh[1010]: #########
Hello World! ########
[26.304682] testvm1.both.org hello.sh[1010]:
###############################
[26.306569] testvm1.both.org audit[1]: SERVICE_START
pid=1 uid=0 auid=4294967295 ses=4294967295 msg='unit=hello
comm="systemd" exe="/usr/lib/systemd/systemd" hostname=?
addr=? terminal=? res=success'

Chapter 4 How to Manage Startup Using systemd

114

[26.306669] testvm1.both.org audit[1]: SERVICE_STOP
pid=1 uid=0 auid=4294967295 ses=4294967295 msg='unit=hello
comm="systemd" exe="/usr/lib/systemd/systemd" hostname=?
addr=? terminal=? res=success'
[26.306772] testvm1.both.org systemd[1]: hello.service:
Succeeded.
[26.306862] testvm1.both.org systemd[1]: Finished My
hello shell script.
[26.584966] testvm1.both.org sm-notify[1011]: Version
2.4.3 starting
<SNIP>

This confirms that the hello.service unit started after the network-online.

target. This is exactly what you want. You may also have seen the “Hello

World” message as it passed by during startup. Notice also that the timestamp

is later in the startup than it was before.

If you changed it, set SELinux back to the mode it was when you

checked at the beginning of this chapter.

setenforce enforcing

�Summary
We’ve explored Linux startup with systemd and unit files and journals in

greater detail and discovered what happens when errors are introduced

into the service file. As a SysAdmin, I find that this type of experimentation

helps me understand the behaviors of a program or service when it

breaks, and breaking things intentionally is a good way to learn in a safe

environment.

Chapter 4 How to Manage Startup Using systemd

115

As these experiments have proved, just adding a service unit to either

the multi-user.target or the graphical.target does not define its place in

the start sequence. It merely determines whether a unit starts as part of

the graphical.target or the non-graphical multi-user.target. The reality is

that the startup targets—multi-user.target and graphical.target—and all of

their Wants and Requires, start up pretty much in parallel. The best way

to ensure that a unit starts in a specific order is to determine the unit it is

dependent on and configure the new unit to “Want” and “After” the unit

upon which it is dependent.

�Exercises
Perform these exercises to complete this chapter:

	 1.	 Name and describe at least three types of

service units.

	 2.	 Why did we use the oneshot service unit type for the

new service?

	 3.	 What target should be specified in the service unit

file so that the service will start both in graphical.

target and multi-user.target?

	 4.	 What tool can be used to verify that a service has

started properly in the specified target?

Chapter 4 How to Manage Startup Using systemd

117© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_5

CHAPTER 5

Manage systemd
Units with systemctl

�Objectives
In this chapter, you will learn

•	 The practical structure of the systemd suite of programs

•	 More advanced usage of the systemctl program

•	 How to obtain more information about systemd

service units

•	 How to create a mount unit that mounts a storage

device during Linux startup

�Overview
In previous chapters, we explored the Linux systemd startup sequence and

were introduced to systemd units. In this chapter, we’ll explore systemd

units in more detail and how to use the systemctl command to explore

and manage units. We’ll also learn to stop and disable units and how to

create a new systemd mount unit to mount a new filesystem and enable it

to initiate during startup.

https://doi.org/10.1007/979-8-8688-1328-3_5#DOI

118

�Preparation
All of the experiments in this chapter should be done as the root user

(unless otherwise specified). Some of the commands that simply list

various systemd units can be performed by non-root users, but the

commands that make changes cannot. Make sure to do all of these

experiments only on non-production hosts or virtual machines (VMs).

EXPERIMENT 5-1: PREPARATION

One of these experiments requires the sysstat package. As root, install it

before you move on. For Fedora and other Red Hat–based distributions, you

can install sysstat with this command:

dnf -y install sysstat

The sysstat RPM installs several statistical tools that can be used for problem

determination. One is System Activity Report (SAR), which records many

system performance data points at regular intervals (every ten minutes by

default). Rather than run as a daemon in the background, the sysstat package

installs two systemd timers. One timer runs every ten minutes to collect data,

and the other runs once a day to aggregate the daily data. In this chapter, I will

look briefly at these timers but wait to explain how to create a timer in a future

article.

�systemd Suite
The fact is systemd is more than just one program. It is a large suite of

programs all designed to work together to manage nearly every aspect of

a running Linux system. A full exposition of systemd would take a book on

its own. Most of us do not need to understand all of the details about how

Chapter 5 Manage systemd Units with systemctl

https://en.wikipedia.org/wiki/Sar_(Unix)

119

all of systemd’s components fit together, so I will focus on the programs

and components that enable you to manage various Linux services and

deal with log files and journals.

�Practical Structure
The structure of systemd—outside of its executable files—is contained in

its many configuration files. Although these files have different names and

identifier extensions, they are all called “unit” files. Units are the basis of

everything systemd. Unit files are ASCII plain-text files that are accessible

to and can be created or modified by a SysAdmin. There are a number of

unit file types, and each has its own man page. Table 5-1 lists some of these

unit file types by their filename extensions and a short description of each.

Table 5-1.  Some systemd unit file types

systemd Unit Description

.automount The .automount units are used to implement on-demand (i.e.,

plug and play) and mounting of filesystem units in parallel during

startup.

.device The .device unit files define hardware and virtual devices that are

exposed to the SysAdmin in the /dev/directory. Not all devices

have unit files; typically, block devices such as hard drives,

network devices, and some others have unit files.

.mount The .mount unit defines a mount point on the Linux filesystem

directory structure.

(continued)

Chapter 5 Manage systemd Units with systemctl

120

Table 5-1.  (continued)

systemd Unit Description

.scope The .scope unit defines and manages a set of system processes.

This unit is not configured using unit files; rather, it is created

programmatically. Per the systemd.scope man page, “The main

purpose of scope units is grouping worker processes of a system

service for organization and for managing resources.”

.service The .service unit files define processes that are managed by

systemd. These include services such as crond cups (Common

Unix Printing System), iptables, multiple logical volume

management (LVM) services, NetworkManager, and more.

.slice The .slice unit defines a “slice,” which is a conceptual division of

system resources that are related to a group of processes. You can

think of all system resources as a pie and this subset of resources

as a “slice” out of that pie.

.socket The .socket units define inter-process communication sockets,

such as network sockets.

.swap The .swap units define swap devices or files.

.target The .target units define groups of unit files that define startup

synchronization points, runlevels, and services. Target units define

the services and other units that must be active in order to start

successfully.

.timer The .timer unit defines timers that can initiate program execution

at specified times.

Chapter 5 Manage systemd Units with systemctl

121

�systemctl
systemd provides the systemctl command that is used to start and stop

services, configure them to launch (or not) at system startup, and monitor

the current status of running services.

EXPERIMENT 5-2: MANAGING SYSTEMD SERVICES

In a terminal session as the root user, ensure that root’s home directory (~)

is the Present Working Directory1 (PWD). To begin looking at units in various

ways, list all of the loaded and active systemd units. systemctl automatically

pipes its stdout2 data stream through the less pager, so you don’t have to do

that yourself. I’ve trimmed the output data stream considerably but left enough

so you can see the wide range of systemd units. Your own system will display

a long list of units.

systemctl
 UNIT LOAD ACTIVE SUB
 DESCRIPTION >
 <SNIP>
 lightdm.service loaded active running
 Light Display Man>
 lm_sensors.service loaded active exited
 Hardware Monitori>
 <SNIP>
 NetworkManager.service loaded active running
 Network Manager
 <SNIP>

1 Wikipedia, “Present Working Directory,” https://en.wikipedia.org/wiki/Pwd
2 Wikipedia, “Standard Output,” https://en.wikipedia.org/wiki/Standard_
streams#Standard_output_(stdout)

Chapter 5 Manage systemd Units with systemctl

https://en.wikipedia.org/wiki/Pwd
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

122

 sshd.service loaded active running
 OpenSSH server da>
<SNIP>
 dev-zram0.swap loaded active active
 Compressed Swap o>
 basic.target loaded active active
 Basic System
 cryptsetup.target loaded active active
 Local Encrypted V>
 getty.target loaded active active
 Login Prompts
 graphical.target loaded active active
 Graphical Interfa>
 integritysetup.target loaded active active
 Local Integrity P>
 local-fs-pre.target loaded active active
 Preparation for L>
 local-fs.target loaded active active
 Local File Systems
 multi-user.target loaded active active
 Multi-User System
 network-online.target loaded active active
 Network is Online
 <SNIP>
 sysstat-collect.timer loaded active waiting
 Run system activi>
 sysstat-summary.timer loaded active waiting
 Generate summary >
 systemd-tmpfiles-clean.timer loaded active waiting
 Daily Cleanup of >
 unbound-anchor.timer loaded active waiting
 daily update of t>

Chapter 5 Manage systemd Units with systemctl

123

LOAD = Reflects whether the unit definition was
properly loaded.
ACTIVE = The high-level unit activation state, i.e.
generalization of SUB.
SUB = The low-level unit activation state, values depend
on unit type.
200 loaded units listed. Pass --all to see loaded but
inactive units, too.

As you scroll through the data in your terminal session, look for some

specific things. The first section lists devices such as hard drives, sound

cards, network interface cards, and TTY devices. Another section shows the

filesystem mount points. Other sections include various services and a list of

all loaded and active targets.

The sysstat timers at the bottom of the output are used to collect and

generate daily system activity summaries for SAR. SAR is a very useful

problem-solving tool. You can learn more about it in Chapter 13 of my book

Using and Administering Linux: Volume 1, Zero to SysAdmin: Getting Started.3

Near the very bottom, three lines describe the meanings of the statuses

(loaded, active, and sub). Press q to exit the pager.

Use the following command (as suggested in the last line of the output above)

to see all the units that are installed, whether or not they are loaded. I won’t

reproduce the output here, because you can scroll through it on your own. The

systemctl program has an excellent tab-completion facility that makes it easy

to enter complex commands without needing to memorize all the options:

systemctl list-unit-files

3 Both, David, Using and Administering Linux: Volume 1, Zero to SysAdmin: Getting
Started, 2nd Edition, Apress, 2023, 395-400.

Chapter 5 Manage systemd Units with systemctl

https://doi.org/10.1007/979-8-8688-1328-3_13

124

You can see that some units are disabled. Table 1 in the man page for

systemctl lists and provides short descriptions of the entries you might see in

this listing. Use the -t (type) option to view just the timer units:

systemctl list-unit-files -t timer
UNIT FILE STATE
chrony-dnssrv@.timer disabled
dnf-makecache.timer enabled
fstrim.timer disabled
logrotate.timer disabled
logwatch.timer disabled
mdadm-last-resort@.timer static
mlocate-updatedb.timer enabled
sysstat-collect.timer enabled
sysstat-summary.timer enabled
systemd-tmpfiles-clean.timer static
unbound-anchor.timer enabled

You could do the same thing with this alternative, which provides considerably

more detail:

systemctl list-timers
Thu 2020-04-16 09:06:20 EDT 3min 59s left
n/a n/a systemd-tmpfiles-
clean.timer systemd-tmpfiles-clean.service
Thu 2020-04-16 10:02:01 EDT 59min left Thu 2020-04-16
09:01:32 EDT 49s ago dnf-makecache.timer dnf-
makecache.service
Thu 2020-04-16 13:00:00 EDT 3h 57min left
n/a n/a sysstat-collect.
timer sysstat-collect.service

Chapter 5 Manage systemd Units with systemctl

125

Fri 2020-04-17 00:00:00 EDT 14h left Thu 2020-04-16
12:51:37 EDT 3h 49min left mlocate-updatedb.timer
mlocate-updatedb.service
Fri 2020-04-17 00:00:00 EDT 14h left Thu 2020-04-16
12:51:37 EDT 3h 49min left unbound-anchor.timer
unbound-anchor.service
Fri 2020-04-17 00:07:00 EDT 15h
left n/a n/a sysstat-
summary.timer sysstat-summary.service

6 timers listed.
Pass --all to see loaded but inactive timers, too.

Although there is no option to do systemctl list-mounts, you can list the mount

point unit files:

systemctl list-unit-files -t mount
UNIT FILE STATE
-.mount generated
boot.mount generated
dev-hugepages.mount static
dev-mqueue.mount static
home.mount generated
proc-fs-nfsd.mount static
proc-sys-fs-binfmt_misc.mount disabled
run-vmblock\x2dfuse.mount disabled
sys-fs-fuse-connections.mount static
sys-kernel-config.mount static
sys-kernel-debug.mount static
tmp.mount generated
usr.mount generated
var-lib-nfs-rpc_pipefs.mount static
var.mount generated
15 unit files listed.

Chapter 5 Manage systemd Units with systemctl

126

The STATE column in this data stream is interesting and requires a bit

of explanation. The “generated” states indicate that the mount unit was

generated on the fly during startup using the information in /etc/fstab. The

program that generates these mount units is /lib/systemd/system-
generators/systemd-fstab-generator, along with other tools that generate

a number of other unit types. The “static” mount units are for filesystems like

/proc and /sys, and the files for these are located in the /usr/lib/systemd/
system directory.

Now, look at the service units. This command will show all services installed

on the host, whether or not they are active:

systemctl --all -t service

The bottom of this listing of service units displays 166 as the total number of

loaded units on my host. Your number will probably differ.

Unit files do not have a filename extension (such as .unit) to help identify

them, so you can generalize that most configuration files that belong to

systemd are unit files of one type or another. The few remaining files are

mostly .conf files located in /etc/systemd. Unit files are stored in the /usr/lib/
systemd directory and its subdirectories, while the /etc/systemd/ directory

and its subdirectories contain symbolic links to the unit files necessary to the

local configuration of this host.

To explore this, make /etc/systemd the PWD and list its contents. Then make

/etc/systemd/system the PWD and list its contents, and list the contents of at

least a couple of the current PWD’s subdirectories. Take a look at the default.
target file, which determines which runlevel target the system will boot to. In

the second article in this series, I explained how to change the default target

from the GUI (graphical.target) to the command-line only (multi-user.target)
target. The default.target file on my test VM is simply a symlink to /usr/lib/
systemd/system/graphical.target.

Chapter 5 Manage systemd Units with systemctl

127

Take a few minutes to examine the contents of the /etc/systemd/system/
default.target file:

cat default.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
�systemd is free software; you can redistribute it and/or

modify it
�under the terms of the GNU Lesser General Public License

as published by
�the Free Software Foundation; either version 2.1 of the

License, or
(at your option) any later version.

[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target
display-manager.service
AllowIsolate=yes

Note that this requires the multi-user.target; the graphical.target cannot

start if the multi-user.target is not already up and running. It also says it

“wants” the display-manager.service unit. A “want” does not need to be

fulfilled in order for the unit to start successfully. If the “want” cannot be

fulfilled, it will be ignored by systemd, and the rest of the target will start

regardless.

Chapter 5 Manage systemd Units with systemctl

128

The subdirectories in /etc/systemd/system are lists of wants for various

targets. Take a few minutes to explore the files and their contents in the /etc/
systemd/system/graphical.target.wants directory.

The systemd.unit man page contains a lot of good information about

unit files, their structure, the sections they can be divided into, and the

options that can be used. It also lists many of the unit types, all of which

have their own man pages. If you want to interpret a unit file, this would be

a good place to start.

�Service Units
A Fedora installation usually installs and enables services that particular

hosts do not need for normal operation. Conversely, sometimes it doesn’t

include services that need to be installed, enabled, and started. Services

that are not needed for the Linux host to function as desired, but which are

installed and possibly running, represent a security risk and should—at

minimum—be stopped and disabled and—at best—should be uninstalled.

EXPERIMENT 5-3: MANAGING SERVICE UNITS

The systemctl command is used to manage systemd units, including services,

targets, mounts, and more. Take a closer look at the list of services to identify

services that will never be used.

systemctl --all -t service
UNIT LOAD ACTIVE SUB
 DESCRIPTION
<snip>
chronyd.service loaded active running
 NTP client/server

Chapter 5 Manage systemd Units with systemctl

129

crond.service loaded    active running
 Command Scheduler
cups.service loaded   active running
 CUPS Scheduler
dbus-daemon.service loaded   active running
 D-Bus System Message Bus
<SNIP>
• ip6tables.service   not-found inactive  dead
 ip6tables.service
• ipset.service   not-found inactive  dead
 ipset.service
• iptables.service   not-found inactive  dead
 iptables.service
<SNIP>
firewalld.
service loaded active    running firewalld
 - dynamic firewall daemon
<SNIP>
• ntpd.service   not-found inactive  dead
 ntpd.service
• ntpdate.service   not-found inactive  dead
 ntpdate.service
pcscd.service   loaded   active  running
 PC/SC Smart Card Daemon

I have pruned most of the output from the command to save space. The

services that show “loaded active running” are obvious. The “not-found”

services are ones that systemd is aware of but are not installed on the Linux

host. If you want to run those services, you must install the packages that

contain them.

Chapter 5 Manage systemd Units with systemctl

130

This data stream is piped to the less pager, so you can page up and down and

search for text strings in the stream. Start a search just as you would in less,

using the / (slash), and then typing the search string.

Find the pcscd.service unit. This is the PC/SC smart card daemon. Its function

is to communicate with smart card readers. Many Linux hosts—including

VMs—have no need for this reader nor the service that is loaded and taking

up memory and CPU resources. You can stop this service and disable it, so it

will not restart on future reboots. First, check its status:

systemctl status pcscd.service
• pcscd.service - PC/SC Smart Card Daemon
 Loaded: �loaded (/usr/lib/systemd/system/pcscd.service;

indirect; preset: disabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf, 50-keep-warm.conf
 Active: active (running) since Thu 2024-11-21 12:14:01
EST; 1s ago
 Invocation: 651b0198bdcb49f8ba99b1290f04c817
TriggeredBy: • pcscd.socket
 Docs: man:pcscd(8)
 Main PID: 265754 (pcscd)
 Tasks: 3 (limit: 9470)
 Memory: 912K (peak: 1.5M)
 CPU: 22ms
 CGroup: /system.slice/pcscd.service
 └─�265754 /usr/sbin/pcscd --foreground

--auto-exit
Nov 21 12:14:01 testvm1.both.org systemd[1]: Started pcscd.
service - PC/SC Smart Card Daemon.

Chapter 5 Manage systemd Units with systemctl

131

Nov 21 12:14:01 testvm1.both.org (pcscd)[265754]: pcscd.
service: Referenced but unset environment variable evaluates
to an empty string: PC>
lines 1-17/17 (END)

This data illustrates the additional information systemd provides vs. SystemV,

which only reports whether or not the service is running. Note that specifying

the .service unit type in the command is optional. Now stop and disable the

service, then recheck its status:

systemctl disable --now pcscd
Removed '/etc/systemd/system/sockets.target.wants/pcscd.
socket'.
Disabling 'pcscd.service', but its triggering units are
still active:
pcscd.socket
systemctl status pcscd
⚬ pcscd.service - PC/SC Smart Card Daemon
 Loaded: �loaded (/usr/lib/systemd/system/pcscd.service;

indirect; preset: disabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf, 50-keep-warm.conf
 Active: �inactive (dead) since Thu 2024-11-21 12:15:02

EST; 19min ago
 Duration: 1min 1.116s
 Invocation: 651b01⚬ pcscd.service - PC/SC Smart Card Daemon
 Loaded: �loaded (/usr/lib/systemd/system/pcscd.service;

indirect; preset: disabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf, 50-keep-warm.conf
 Active: �inactive (dead) since Thu 2024-11-21 12:15:02

EST; 19min ago

Chapter 5 Manage systemd Units with systemctl

132

 Duration: 1min 1.116s
 Invocation: 651b0198bdcb49f8ba99b1290f04c817
TriggeredBy: • pcscd.socket
 Docs: man:pcscd(8)
 Main PID: 265754 (code=exited, status=0/SUCCESS)
 Mem peak: 1.5M
 CPU: 23ms

The short log entry display for most services prevents having to search

through various log files to locate this type of information. Note the error

message indicating that the pcscd.socket can activate the service. Sockets

are used for many services so that the service doesn’t necessarily need to run

all the time. A message or request sent to the socket starts the corresponding

service.

We don’t want the smart card daemon to start at all, so disable the socket and

verify its new status.

systemctl disable --now pcscd.socket
Removed '/etc/systemd/system/sockets.target.wants/pcscd.
socket'.
root@testvm1:~# systemctl status pcscd.socket
⚬ pcscd.socket - PC/SC Smart Card Daemon Activation Socket
 Loaded: �loaded (/usr/lib/systemd/system/pcscd.socket;

disabled; preset: enabled)
 Active: inactive (dead)
 Triggers: • pcscd.service
 Listen: /run/pcscd/pcscd.comm (Stream)

Nov 20 06:58:37 testvm1.both.org systemd[1]: Listening on
pcscd.socket - PC/SC Smart Card Daemon Activation Socket.
Nov 21 12:38:32 testvm1.both.org systemd[1]: pcscd.socket:
Deactivated successfully.

Chapter 5 Manage systemd Units with systemctl

133

Nov 21 12:38:32 testvm1.both.org systemd[1]: Closed pcscd.
socket - PC/SC Smart Card Daemon Activation Socket.
Nov 21 12:38:40 testvm1.both.org systemd[1]: Listening on
pcscd.socket - PC/SC Smart Card Daemon Activation Socket.
Nov 21 12:38:44 testvm1.both.org systemd[1]: pcscd.socket:
Deactivated successfully.
Nov 21 12:38:44 testvm1.both.org systemd[1]: Closed pcscd.
socket - PC/SC Smart Card Daemon Activation Socket.
root@testvm1:~#

�Mounts the Old Way
A mount unit defines all of the parameters required to mount a filesystem

on a designated mount point. systemd can manage mount units with

more flexibility than those using the /etc/fstab filesystem configuration

file. Despite this, systemd still uses the /etc/fstab file for filesystem

configuration and mounting purposes. systemd uses the systemd-fstab-
generator tool to create transient mount units from the data in the

fstab file.

EXPERIMENT 5-4: MOUNTING A NEW FILESYSTEM

In this experiment, we’ll create a new partition, filesystem, and an fstab entry

to mount it.

Note  The volume group and logical volume names may be different
on your test system. Be sure to use the names that are pertinent to
your system.

Chapter 5 Manage systemd Units with systemctl

134

You will need to create a new partition or logical volume, then make an

EXT4 filesystem on it. Add a label to the filesystem, TestFS, and create a

directory for a mount point /TestFS. To try this on your own, first, verify that

you have free space on the volume group. Here is what that looks like on my

VM where I have some space available on the volume group to create a new

logical volume:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 120G 0 disk
├─sda1 8:1 0 2M 0 part
├─sda2 8:2 0 5G 0 part /boot
└─sda3 8:3 0 115G 0 part
 ├─vg01-root 253:0 0 5G 0 lvm /
 ├─vg01-usr 253:1 0 30G 0 lvm /usr
 ├─vg01-var 253:2 0 30G 0 lvm /var
 ├─vg01-home 253:3 0 5G 0 lvm /home
 └─vg01-tmp 253:4 0 10G 0 lvm /tmp
sr0 11:0 1 1024M 0 rom
zram0 252:0 0 7.7G 0 disk [SWAP]
root@testvm1:~# vgs
 VG #PV #LV #SN Attr VSize VFree
 vg01 1 5 0 wz--n- 114.99g 34.99g

Then create a new volume on VG01 named TestFS. It does not need to be

large; 1GB is fine. Then create a filesystem, add the filesystem label, and

create the mount point.

lvcreate -L 1G -n TestFS vg01
 Logical volume "TestFS" created.
mkfs -t ext4 /dev/mapper/vg01-TestFS
mke2fs 1.45.3 (14-Jul-2019)
Creating filesystem with 262144 4k blocks and 65536 inodes

Chapter 5 Manage systemd Units with systemctl

135

Filesystem UUID: 8718fba9-419f-4915-ab2d-8edf811b5d23
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Allocating group tables: done
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting
information: done

e2label /dev/mapper/vg01-TestFS TestFS
mkdir /TestFS

Now, mount the new filesystem:

mount /TestFS/
mount: /TestFS/: can't find in /etc/fstab.

That’s what I did and it won’t work because I didn’t have an entry in /etc/
fstab. You can mount the new filesystem even without the entry in /etc/
fstab using both the device name (as it appears in /dev) and the mount point.

Mounting in this manner is simpler than it used to be—it used to require the

filesystem type as an argument. The mount command is now smart enough to

detect the filesystem type and mount it accordingly.

Try it again.

mount /dev/mapper/vg01-TestFS /TestFS/
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 120G 0 disk
├─sda1 8:1 0 4G 0 part /boot
└─sda2 8:2 0 116G 0 part
 ├─VG01-root 253:0 0 5G 0 lvm /
 ├─VG01-swap 253:1 0 8G 0 lvm [SWAP]
 ├─VG01-usr 253:2 0 30G 0 lvm /usr

Chapter 5 Manage systemd Units with systemctl

136

 ├─VG01-home 253:3 0 20G 0 lvm /home
 ├─VG01-var 253:4 0 20G 0 lvm /var
 ├─VG01-tmp 253:5 0 10G 0 lvm /tmp
 └─VG01-TestFS 253:6 0 1G 0 lvm /TestFS
sr0 11:0 1 1024M 0 rom
zram0 252:0 0 7.7G 0 disk [SWAP]

Now the new filesystem is mounted in the proper location. List the mount

unit files.

systemctl list-unit-files -t mount

This command does not show a file for the /TestFS filesystem because no file

exists for it. The command systemctl status TestFS.mount does not display

any information about the new filesystem either. You can try it using wildcards

with the systemctl status command:

systemctl status *mount
• usr.mount - /usr
 Loaded: loaded (/etc/fstab; generated)
 Active: active (mounted)
 Where: /usr
 What: /dev/mapper/VG01-usr
 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)

<SNIP>
• TestFS.mount - /TestFS
 Loaded: loaded (/proc/self/mountinfo)
 Active: �active (mounted) since Fri 2020-04-17 16:02:26

EDT; 1min 18s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS

Chapter 5 Manage systemd Units with systemctl

137

• run-user-0.mount - /run/user/0
 Loaded: loaded (/proc/self/mountinfo)
 Active: �active (mounted) since Thu 2020-04-16 08:52:29

EDT; 1 day 5h ago
 Where: /run/user/0
 What: tmpfs

• var.mount - /var
 Loaded: loaded (/etc/fstab; generated)
 Active: �active (mounted) since Thu 2020-04-16 12:51:34

EDT; 1 day 1h ago
 Where: /var
 What: /dev/mapper/VG01-var
 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)
 Tasks: 0 (limit: 19166)
 Memory: 212.0K
 CPU: 5ms
 CGroup: /system.slice/var.mount

This command provides some very interesting information about your

system’s mounts, and your new filesystem shows up here. The /var and /usr
filesystems are identified as being generated from /etc/fstab, while your new

filesystem simply shows that it is loaded and provides the location of the info

file in the /proc/self/mountinfo file.

Next, automate this mount. First, do it the old-fashioned way by adding an

entry in /etc/fstab. Later, I’ll show you how to do it the new way, which will

teach you more about creating units and integrating them into the startup

sequence.

Unmount /TestFS and add the following line to the /etc/fstab file:

/dev/mapper/vg01-TestFS /TestFS ext4 defaults 1 2

Chapter 5 Manage systemd Units with systemctl

138

After changing fstab, use “systemctl daemon-reload” to reload the daemon

configurations, including the filesystems in /etc/fstab.

systemctl daemon-reload

Now, mount the filesystem with the simpler version of the mount command

and list the mount units again.

mount /TestFS

systemctl status *mount
<SNIP>
• TestFS.mount - /TestFS
 Loaded: loaded (/etc/fstab; generated)
 Active: �active (mounted) since Thu 2024-11-21 16:37:23

EST; 2min 41s ago
 Invocation: 45988dea733a4bf39d9aafae1597037d
 Where: /TestFS
 What: /dev/mapper/vg01-TestFS
 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)
<SNIP>

The information for this mount did not change because the filesystem was

manually mounted. Reboot and run the command again, and this time specify

TestFS.mount rather than using the wildcard. The results for this mount are

now consistent with it being mounted at startup:

systemctl status TestFS.mount
• TestFS.mount - /TestFS
 Loaded: loaded (/etc/fstab; generated)
 Active: �active (mounted) since Fri 2020-04-17 16:30:21

EDT; 1min 38s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS

Chapter 5 Manage systemd Units with systemctl

139

 Docs: man:fstab(5)
 man:systemd-fstab-generator(8)
 Tasks: 0 (limit: 19166)
 Memory: 72.0K
 CPU: 6ms
 CGroup: /system.slice/TestFS.mount

Apr 17 16:30:21 testvm1 systemd[1]: Mounting /TestFS...
Apr 17 16:30:21 testvm1 systemd[1]: Mounted /TestFS.

�Creating a Mount Unit
Mount units may be configured either with the traditional /etc/fstab file

or with systemd units. Fedora uses the fstab file as it is created during the

installation. However, systemd uses the systemd-fstab-generator program

to translate the fstab file into systemd units for each entry in the fstab file.

Now that you know you can use systemd .mount unit files for filesystem

mounting, let’s create a mount unit for the new filesystem.

EXPERIMENT 5-5: MOUNTING WITH SYSTEMD

First, unmount /TestFS. Edit the /etc/fstab file and delete or comment out the

TestFS line. Now, create a new file with the name TestFS.mount in the /usr/
local/lib/systemd/system directory.4 Edit it to contain the configuration data

below. The unit filename and the name of the mount point must be identical, or

the mount will fail.

4 The /usr/local/lib/systemd/system is the correct location to place locally created
systemd unit files.

Chapter 5 Manage systemd Units with systemctl

140

This mount unit is for the TestFS filesystem
Copyright David Both, 2025
GNU All-Permissive License:
Copying and distribution of this file, with or without
modification, are permitted in any medium without royalty
�provided the copyright notice and this notice are
preserved.

This file is offered as-is, without any warranty.
This file should be located in the
/usr/local/lib/systemd/system directory

[Unit]
Description=TestFS Mount

[Mount]
What=/dev/mapper/VG01-TestFS
Where=/TestFS
Type=ext4
Options=defaults

[Install]
WantedBy=multi-user.target

The Description line in the [Unit] section is for us humans, and it provides the

name that’s shown when you list mount units with systemctl -t mount. The

data in the [Mount] section of this file contains essentially the same data that

would be found in the fstab file.

You can verify the logic and syntax of the service unit.

systemd-analyze verify /etc/systemd/system/TestFS.service

Adhering to the Linux philosophy tenet, “silence is golden,” a lack of output

messages means that there are no errors in the scanned file.

Chapter 5 Manage systemd Units with systemctl

141

Now enable the mount unit.

systemctl enable TestFS.mount
Created symlink /etc/systemd/system/multi-user.target.wants/
TestFS.mount → /etc/systemd/system/TestFS.mount.

This creates the symlink in the /etc/systemd/system directory, which will

cause this mount unit to be mounted on all subsequent boots. The filesystem

has not yet been mounted, so you must “start” it:

systemctl start TestFS.mount

You could also enable and start the mount unit at the same time.

systemctl enable --now TestFS.mount

Verify that the filesystem has been mounted:

systemctl status TestFS.mount
• TestFS.mount - TestFS Mount
 Loaded: �loaded (/etc/systemd/system/TestFS.mount;

enabled; vendor preset: disabled)
 Active: �active (mounted) since Sat 2020-04-18 09:59:53

EDT; 14s ago
 Where: /TestFS
 What: /dev/mapper/VG01-TestFS
 Tasks: 0 (limit: 19166)
 Memory: 76.0K
 CPU: 3ms
 CGroup: /system.slice/TestFS.mount

Apr 18 09:59:53 testvm1 systemd[1]: Mounting TestFS Mount...
Apr 18 09:59:53 testvm1 systemd[1]: Mounted TestFS Mount.

Chapter 5 Manage systemd Units with systemctl

142

This experiment has been specifically about creating a unit file for a mount,

but can be applied to other types of unit files as well. The details will be

different, but the concepts are the same. Yes, I know it is still easier to add

a line to the /etc/fstab file than it is to create a mount unit. But this is a

good example of how to create a unit file because systemd does not have

generators for every type of unit.

�Summary
In this chapter, we looked at the practical structure of systemd. We

explored systemd units in more detail and learned how to use the

systemctl command to explore and manage units. We also explored how to

stop and disable units and created a systemd mount unit to mount a new

filesystem and enable it to initiate during startup.

�Exercises
Perform these exercises to complete this chapter:

	 1.	 Define the term “Unit” as it applies to systemd.

	 2.	 Describe the process that systemd uses to mount

filesystems that don’t have a mount unit.

	 3.	 What’s the point of using a mount unit for mounting

new filesystems when the mount generator works

just as well?

Chapter 5 Manage systemd Units with systemctl

143

	 4.	 Why do we place locally created systemd unit files in

the /usr/local/lib/systemd/system directory?

	 5.	 Create a small, new partition or logical volume on

your test host. Configure it to mount using a systemd

mount unit.

	 6.	 Verify that it’s necessary to have a line in /etc/

fstab for filesystems whether they’re mounted the

historical way or using systemd mount units.

Chapter 5 Manage systemd Units with systemctl

145© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_6

CHAPTER 6

Control Your
Computer Time and
Date with systemd

�Objectives
In this chapter, you will learn

•	 To list the typical reasons that time is important to

computers

•	 To list and describe the two different times that modern

Linux hosts maintain

•	 To define Network Time Protocol (NTP)

•	 To describe the NTP server hierarchy

•	 How to keep your Linux computer time in sync with the

NTP servers

•	 To use chrony and systemd-timesyncd to manage the

time services

•	 To use your Linux host as a time server for an

internal network

https://doi.org/10.1007/979-8-8688-1328-3_6#DOI

146

�Overview
Does anybody really know what time it is? Does anybody
really care?

—Chicago, 1969

Perhaps that rock group didn’t care what time it was, but our computers

and devices really need to know the exact time.

Most people are concerned with time. We get up in time to perform

our morning rituals and commute to work, take a break for lunch, meet a

project deadline, celebrate birthdays and holidays, catch a plane, and so

much more.

Some of us are even obsessed with time. My watch is solar-powered

and obtains the exact time from the National Institute of Standards and

Technology (NIST) in Fort Collins, Colorado, via the WWVB time signal

radio station located there. The time signals are synced to the atomic

clock, also located in Fort Collins. My Fitbit syncs up to my phone, which

is synced to a Network Time Protocol (NTP) server, which is ultimately

synced to the atomic clock.

And, of course, I have an NTP time server in my home network, and all

my other hosts get their time from that.

Although we SysAdmins use command-line programs and Bash scripts

to automate the tasks we perform as SysAdmins, what happens when tasks

need to be performed at times that are not convenient for us as humans?

For example, if we do backups at 01:01AM every morning, or run a

maintenance script at 03:00AM every Sunday, I most definitely do not want

to get out of bed to perform those tasks.

Linux provides multiple tools and ways in which we can use those tools

to run tasks at specified times in the future, repeating as needed or just

for a one-time occurrence. However, keeping accurate time is critical to

ensuring that scheduled jobs run at the correct times.

Chapter 6 Control Your Computer Time and Date with systemd

147

This chapter starts by looking at computer times, NTP, and the use of

chrony to synchronize the time our computer keeps with a standardized

time reference such as an atomic clock. We’ll then move on to using

systemd-timesyncd.

�Why Time Is Important to Computers
There are many reasons our devices and computers need the exact time.

For example, in banking, stock markets, and other financial businesses,

transactions must be maintained in the proper order, and exact time

sequences are critical for that.

Our phones, tablets, cars, GPS systems, and computers all require

precise time and date settings. I want the clock on my computer desktop

to be correct, so I can count on my local calendar application to pop up

reminders at the correct time. More importantly, the correct time also

ensures old-style cron jobs and systemd timers trigger at the correct time.

The correct time is also important for logging, so it’s easier to locate

specific log entries based on the time. For one example, I once worked in

DevOps (it was not called that at the time) for the State of North Carolina

email system. We used to process more than 20 million emails per day.

Following the trail of email through a series of servers or determining the

exact sequence of events by using log files on geographically dispersed

hosts can be much easier when the computers in question keep

exact times.

�Multiple Times
Linux hosts have two times to consider: system time and RTC time. RTC

stands for real-time clock, which is a fancy and not particularly accurate

name for the system hardware clock.

Chapter 6 Control Your Computer Time and Date with systemd

148

The hardware clock runs continuously, even when the computer

is turned off, powered by the battery on the system motherboard. The

RTC’s primary function is to keep the time when a connection to a time

server is not available. In the dark ages of personal computers, there was

no Internet to connect to a time server, so the only time a computer had

available was the internal clock. Operating systems had to rely on the RTC

at boot time, and the user had to manually set the system time using the

hardware BIOS configuration interface to ensure it was correct.

The hardware clock doesn’t understand the concept of time zones;

only the time is stored in the RTC, not the time zone nor an offset from

UTC (Universal Coordinated Time, which is also known as GMT, or

Greenwich Mean Time). The RTC time can be set with a tool I’ll cover later

in this chapter.

The system time is the time known by the operating system. It is the

time you see on the GUI clock on your desktop, in the output from the

date command, in timestamps for logs, and in file access, modify, and

change times.

The rtc man page contains a more complete discussion of the RTC and

system clocks and RTC’s functionality.

�NTP
NTP is the Network Time Protocol1 that is used by computers worldwide

to synchronize their times with Internet standard reference clocks via a

hierarchy of NTP servers.

There are multiple tools available for management of NTP

timekeeping. We look at two, chrony and systemd-timesync.

1 Wikipedia, https://en.wikipedia.org/wiki/Network_Time_Protocol

Chapter 6 Control Your Computer Time and Date with systemd

https://en.wikipedia.org/wiki/Network_Time_Protocol

149

�The NTP Server Hierarchy
The NTP server hierarchy is built in layers called strata. Each stratum

is a layer of NTP servers. The primary servers are at stratum 1, and they

are connected directly to various national time services at stratum 0 via

satellite, radio, or even modems over phone lines in some cases. Those

time services at stratum 0 may be an atomic clock, a radio receiver that is

tuned to the signals broadcast by an atomic clock, or a GPS receiver using

the highly accurate clock signals broadcast by GPS satellites.

To prevent time requests from time servers lower in the hierarchy,

that is, with a higher stratum number, from overwhelming the primary

reference servers, there are several thousand public NTP stratum 2 servers

that are open and available for all to use. Many users and organizations,

myself included, with large numbers of their own hosts that need an NTP

server, set up their own time servers so that only one local host actually

accesses the stratum 2 time servers. The remaining hosts in our networks

are all configured to use the local time server, which, in my case, is a

stratum 3 server.

�NTP Implementation Options
The original NTP implementation is ntpd, the NTP daemon, and it has

been joined by two newer ones, chronyd and systemd-timesyncd. All

three keep the local host’s time synchronized with an NTP time server. The

systemd-timesyncd service is not as robust as chronyd, but it is sufficient

for most purposes. It can perform large time jumps if the RTC is far out

of sync, and it can adjust the system time gradually to stay in sync with

the NTP server if the local system time drifts a bit. The systemd-timesync

service cannot be used as a time server.

Chapter 6 Control Your Computer Time and Date with systemd

150

Chrony is an NTP implementation containing two programs: the

chronyd daemon and a command-line interface called chronyc. Chrony

has some features that make it the best choice for many environments,

chiefly:

•	 Chrony can synchronize to the time server much faster

than the old ntpd service. This is good for laptops or

desktops that do not run constantly.

•	 It can compensate for fluctuating clock frequencies,

such as when a host hibernates or enters sleep mode or

when the clock speed varies due to frequency stepping

that slows clock speeds when loads are low.

•	 It handles intermittent network connections and

bandwidth saturation.

•	 It adjusts for network delays and latency.

•	 After the initial time sync, chrony never stops the clock.

This ensures stable and consistent time intervals for

many system services and applications.

•	 Chrony can work even without a network connection.

In this case, the local host or server can be updated

manually using the date command.

•	 Chrony can act as an NTP server.

Just to be clear, NTP is a protocol that is implemented on a Linux host

using either chrony or the systemd-timesyncd.service.

Chapter 6 Control Your Computer Time and Date with systemd

151

The NTP, chrony, and systemd-timesyncd RPM packages are available

in standard Linux distribution repositories. The systemd-udev RPM is

a rule-based device node and kernel event manager that is installed by

default with Fedora but not enabled.

You can install all three and switch between them, but that’s a lot of

work and not worth the trouble. Modern releases of Fedora and RHEL have

moved from NTP to chrony as their default timekeeping implementation.

They also install systemd-timesyncd. I find that chrony works well,

provides a better interface than the NTP service, presents much more

information, and increases control, which are all advantages for the

SysAdmin.

�NTP Client Configuration
The NTP client configuration is simple and requires little or no change.

The NTP server can be defined by the SysAdmin during the Linux

installation, or it can be provided by the DHCP server at boot time. The

default /etc/chrony.conf file shown in its entirety in Figure 6-1 requires no

alterations to work properly as a client. For Fedora, chrony uses the Fedora

NTP pool. RHEL also has its own NTP server pool. Like many Red Hat–

based distributions, the configuration file is well commented.

Chapter 6 Control Your Computer Time and Date with systemd

152

Figure 6-1.  The default chrony.conf configuration file

Chapter 6 Control Your Computer Time and Date with systemd

153

If an NTP server is defined during installation, it will be the first entry

in chrony.conf. It will be preceded by a comment that the device was

defined during installation, as in Figure 6-2. This is also the case if the

DHCP service provides the IP address of a time server.

Figure 6-2.  These two lines are added at the beginning of the chrony.
conf configuration file if a time server is specified during installation

�NTP Server Pools
Line 3 of the default chrony.conf file lists a server that’s part of a pool of

Fedora NTP time servers. There are many server pools2 with thousands of

servers worldwide.

The objective for the server pools is to spread the load of millions of

NTP clients so that no one server becomes overloaded with requests. Pools

also provide multiple servers so that, if one is unavailable, others will be.

Most Linux distributions have their own pool of servers. Fedora and

Red Hat are no exceptions. GitHub has a long list of top public server

pools,3 and all the major distributions and a number of lesser ones have

pools listed. We’ll use the list of Fedora pools in an experiment.

2 NTP Pool Project, https://www.ntppool.org/en/
3 GitHub NTP Server pools, https://gist.github.com/bakursait/1ccca11ccf4
6d5a6337600e6497ca3be

Chapter 6 Control Your Computer Time and Date with systemd

https://www.ntppool.org/en/
https://gist.github.com/bakursait/1ccca11ccf46d5a6337600e6497ca3be
https://gist.github.com/bakursait/1ccca11ccf46d5a6337600e6497ca3be

154

�Chrony
The chrony daemon, chronyd, runs in the background and monitors the

time and status of the time server specified in the chrony.conf file. If the

local time needs to be adjusted, chronyd does so smoothly without the

programmatic trauma that would occur if the clock were to be instantly

reset to a new time.

Chrony also provides the chronyc tool that allows us to monitor the

current status of chrony and to make changes if necessary. The chronyc

utility can be used as a command that accepts sub-commands, or it can be

used as an interactive text mode program. We will use it both ways.

Yes, this book is about systemd, and chrony is not part of it. Why

explore the chrony time and date services?

For now, at least, chrony is the default timekeeping service for Fedora

and other distributions, so learning to use that provides both insight into

the current service as well as a baseline from which to consider systemd-

timesyncd. A big part of understanding systemd is knowing how to use

it to interact with other services. The primary use of systemd is to run

services that aren't systemd. The systemd timers are an important aspect

of systemd, and their correct functioning is dependent upon accurate

timekeeping. The systemd journal also relies on an accurate system clock.

The command we use to interact with chrony is chronyc, and it can

be used directly on the command line or in scripts. It can also be used

interactively in a Captive User Interface4 (CUI).

4 A Captive User Interface (CUI) is one in which the program takes control of the
terminal, and all user input is through that interface, in this case, chronyc. There is
no access to shell commands when using a CUI, unless the CUI provides for it.

Chapter 6 Control Your Computer Time and Date with systemd

155

�Using chronyc from the Command Line
Chronyc is used on the command line with a number of sub-commands

that also can be used in scripts. I find this to be the method I use most

frequently, so let’s explore it first.

EXPERIMENT 6-1: GETTING STARTED WITH CHRONY

Let’s start by verifying that the chrony service is running on a newly installed

Fedora 41 host. It should be on most current distributions.

systemctl status chronyd
• chronyd.service - NTP client/server
 Loaded: �loaded (/usr/lib/systemd/system/chronyd.

service; enabled; preset: enabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf
 Active: �active (running) since Tue 2024-11-12 13:00:09

EST; 19min ago
 Invocation: 2b74de9054d64b27ab824bc9d997f8dd
 Docs: man:chronyd(8)
 man:chrony.conf(5)
 Process: 1077 ExecStart=/usr/sbin/chronyd $OPTIONS
(code=exited, status=0/SUCCESS)
 Main PID: 1180 (chronyd)
 Tasks: 1 (limit: 19131)
 Memory: 4.6M (peak: 5.3M)
 CPU: 165ms
 CGroup: /system.slice/chronyd.service
 └─1180 /usr/sbin/chronyd -F 2

Nov 12 13:00:09 f41vm.both.oreg systemd[1]: Started chronyd.
service - NTP client/server.

Chapter 6 Control Your Computer Time and Date with systemd

156

Nov 12 13:00:09 f41vm.both.oreg chronyd[1180]: chronyd
version 4.6.1 starting (+CMDMON +NTP +REFCLOCK +RTC +PRIVDROP
+SCFILTER +SIGND +ASYNCDNS +NTS +SECH>
Nov 12 13:00:09 f41vm.both.oreg chronyd[1180]: Using leap
second list /usr/share/zoneinfo/leap-seconds.list
Nov 12 13:00:09 f41vm.both.oreg chronyd[1180]: Frequency
18715.289 +/- 0.989 ppm read from /var/lib/chrony/drift
Nov 12 13:00:09 f41vm.both.oreg chronyd[1180]: Loaded
seccomp filter (level 2)
Nov 12 13:00:12 f41vm.both.oreg chronyd[1180]: Source
192.168.0.52 offline
Nov 12 13:00:13 f41vm.both.oreg chronyd[1180]: Source
192.168.0.52 online
Nov 12 13:00:13 f41vm.both.oreg chronyd[1180]: Could not add
source 192.168.0.52 : Already in use
Nov 12 13:00:17 f41vm.both.oreg chronyd[1180]: Selected
source 192.168.0.52
Nov 12 13:00:17 f41vm.both.oreg chronyd[1180]: System clock
TAI offset set to 37 seconds

However, this shows the systemd view of the chronyd.service and little about

the timekeeping status of chrony.

The chrony service provides a command that can be used both

interactively and directly on the command line. This command, chronyc,

offers a much more in-depth look at the time on our hosts. Let’s look at the

current status of NTP on our hosts using the chronyc command.

Chapter 6 Control Your Computer Time and Date with systemd

157

EXPERIMENT 6-2: CHRONY STATUS AND INFORMATION

Perform this experiment as the root user.

When used with the tracking sub-command, the chronyc command provides

statistics that tell us how far off the local system is from the reference server.

chronyc tracking
Reference ID : C0A80034 (yorktown.both.org)
Stratum : 3
Ref time (UTC) : Tue Nov 12 18:29:26 2024
System time : 0.000004870 seconds slow of NTP time
Last offset : -0.000007259 seconds
RMS offset : 0.000019674 seconds
Frequency : 18715.217 ppm fast
Residual freq : -0.001 ppm
Skew : 0.087 ppm
Root delay : 0.030009745 seconds
Root dispersion : 0.002015243 seconds
Update interval : 129.4 seconds
Leap status : Normal

The Reference ID in the first line of the result is the server to which our host

is synchronized. The rest of these lines are described in the chronyc(1) man

page. The stratum line indicates which stratum our local VM is at, so the

yorktown.both.org host—my own NTP server—is at stratum 3.

The other sub-command I find interesting and useful is sources which

provides information about the time sources configured in chrony.conf

Chapter 6 Control Your Computer Time and Date with systemd

158

chronyc sources
MS Name/IP address Stratum Poll Reach LastRx
Last sample
==
===================
^* yorktown.both.org 2 8 377 55 +418us[
+430us] +/- 18ms

This is the sole server provided by my DHCP server. You can see that in the

section of dhcpd.conf I’ve copied below:

subnet 192.168.0.0 netmask 255.255.255.0 {

--- default gateway
 option routers 192.168.0.254;
 option subnet-mask 255.255.255.0;

option nis-domain "both.org";
 option domain-name "both.org";
 option domain-search "both.org";
 option domain-name-servers �192.168.0.52,

8.8.8.8, 8.8.4.4;

 option time-offset �-18000; # Eastern
Standard Time

 option ntp-servers 192.168.0.52;

Obviously, the NTP sources will be different on your hosts. For most users, it

will be provided by the DHCP server in the router provided by your ISP or the

DHCP server on your organization’s network.

Now let’s modify the chrony.conf on our host. We’ll add some servers from the

Fedora pool5 of NTP servers. We need to look these up.

5 The chrony.conf file used to provide the list of Fedora pool servers, but no
longer does.

Chapter 6 Control Your Computer Time and Date with systemd

159

The revised chrony.conf file looks like this:

These servers were defined in the installation:
server yorktown.both.org iburst

Use public servers from the pool.ntp.org project.
Please consider joining the pool (https://www.pool.ntp.
org/join.html).

server 0.fedora.pool.ntp.org
server 1.fedora.pool.ntp.org
server 2.fedora.pool.ntp.org
server 3.fedora.pool.ntp.org
server 192.168.0.52 iburst prefer
<SNIP>

This shows a couple things of interest. First, the NTP server on my network is

shown twice, on line 2, by fully qualified domain name (FQDN) and, second, by

IP address, 192.168.0.52. Either form is acceptable.

The “iburst” argument is used to speed synchronization of the local system

clock with the specified server. The “prefer” argument tells chrony to use this

server if it’s available, even if others might have faster response times.

Restart the chronyd service to activate the additional NTP servers.

systemctl restart chronyd

Now look at the list of servers.

chronyc sources

Chapter 6 Control Your Computer Time and Date with systemd

160

MS Name/IP address Stratum Poll Reach LastRx
Last sample
==
===================
^- triton.ellipse.net 2 10 377
933 +11ms[+11ms] +/- 51ms
^- dutch.arpnet.net 2 10 377 489 +593us[
+598us] +/- 58ms
^- 167-248-62-201.oa02.lnk0> 3 10 377 942
+990us[+1040us] +/- 96ms
^- 23.155.40.38 1 10 377 41m +1198us[
+989us] +/- 21ms
^* yorktown.both.org 2 6 377 34 +109us[
+110us] +/- 16ms

Even though I have my local NTP server, yorktown, set as “prefer,” it would

have been selected anyway because it has the fastest response times.

These four new servers were provided by the NTP pool. The “S” column—

Source State—indicates that the server with an asterisk (*) in that line is the

one to which our host is currently synchronized. This is consistent with the

data from the tracking sub-command.

chronyc tracking
Reference ID : C0A80034 (yorktown.both.org)
Stratum : 3
Ref time (UTC) : Tue Nov 12 22:06:40 2024
System time : 0.000000119 seconds fast of NTP time
Last offset : -0.000107550 seconds
RMS offset : 0.000045720 seconds
Frequency : 18714.738 ppm fast
Residual freq : -0.045 ppm
Skew : 0.134 ppm

Chapter 6 Control Your Computer Time and Date with systemd

161

Root delay : 0.029763760 seconds
Root dispersion : 0.003469882 seconds
Update interval : 259.3 seconds
Leap status : Normal

Note that the -v option for the sources sub-command provides a nice

description of the fields in this output.

chronyc sources -v
 .-- Source mode '^' = server, '=' = peer, '#' =
local clock.
 / .- Source state '*' = current best, '+' = combined, '-' =
not combined,
| / 'x' = may be in error, '~' = too variable,
'?' = unusable.
|| .- xxxx [
yyyy] +/- zzzz
|| Reachability register (octal) -. | xxxx =
adjusted offset,
|| Log2(Polling interval) --. | | yyyy =
measured offset,
|| \ | | zzzz =
estimated error.
|| | | \
MS Name/IP address Stratum Poll Reach LastRx
Last sample
==
===================
^- triton.ellipse.net 2 10 377
400 +9226us[+9247us] +/- 51ms
^- dutch.arpnet.net 2 10
377 1000 +1230us[+1238us] +/- 47ms

Chapter 6 Control Your Computer Time and Date with systemd

162

^- 167-248-62-201.oa02.lnk0> 3 10 377 416 +159us[
+181us] +/- 71ms
^- 23.155.40.38 1 10 377 908 -357us[
-371us] +/- 22ms
^* yorktown.both.org 2 6 377 26
-19us[-21us] +/- 17ms

This shows the list of servers, their stratum, and their response times. The

asterisk (splat) in column 2 indicates the time source in use.

Type quit to exit from chronyc.

When we want a particular server to be the preferred time source for

a host, even though it may have a slower response time, we could add the

argument “prefer” to the end of the desired line. This configuration file is

not sequence-sensitive, so server lines can be placed anywhere.

The host will always be synchronized with the preferred reference

source so long as it is available. You could also use the fully qualified

hostname for a remote reference server or the hostname only without

the domain name for a local reference time source so long as the search

statement is set in the /etc/resolv.conf file. I prefer the IP address to ensure

that the time source is accessible even if DNS is not working. In most

environments, the server name is probably the better option because NTP

will continue to work even if the IP address of the server is changed.

You may not have a specific reference source with which you want to

synchronize, so it is fine to use the defaults.

�Chronyc As an Interactive Tool
I mentioned near the beginning of this section that chronyc can be used as

an interactive command tool. I use this interface less frequently than I do

directly on the command line, but it can be very useful.

Chapter 6 Control Your Computer Time and Date with systemd

163

EXPERIMENT 6-3: USING CHRONYC INTERACTIVELY

Perform this experiment as root. Let’s look at the chronyc command in

more detail. Simply run the command without a sub-command, and you get a

chronyc command prompt.

chronyc
chrony version 4.6.1
Copyright (C) 1997-2003, 2007, 2009-2024 Richard P. Curnow
and others chrony comes with ABSOLUTELY NO WARRANTY. This
is free software, and you are welcome to redistribute it
under certain conditions. See the GNU General Public
License version 2 for details.

chronyc> tracking
Reference ID : C0A80034 (yorktown.both.org)
Stratum : 3
Ref time (UTC) : Wed Nov 13 12:37:06 2024
System time : 0.000003438 seconds slow of NTP time
Last offset : -0.000007458 seconds
RMS offset : 0.000018563 seconds
Frequency : 18715.752 ppm fast
Residual freq : -0.041 ppm
Skew : 0.122 ppm
Root delay : 0.028430695 seconds
Root dispersion : 0.001395065 seconds
Update interval : 64.4 seconds
Leap status : Normal
chronyc>

Chapter 6 Control Your Computer Time and Date with systemd

164

Now you can enter just the sub-commands. Try using the tracking, ntpdata,

and sources sub-commands. The chronyc command line allows command

recall and editing for chronyc sub-commands. You can use the help sub-

command to get a list of possible commands and their syntax.

One thing I like to do after my client computers have synchronized with the

NTP server is to set the system hardware clock from the system (OS) time

using the following system command. Note that it is not a chronyc command,

so enter this command as root in a separate terminal session.

[root@studentvm1 ~]# /sbin/hwclock --systohc

This command can be added as a cron job, as a script in cron.daily, or as a

systemd timer to keep the hardware clock synced with the system time.

Chrony is a powerful tool for synchronizing the times of client hosts

whether they are all on the local network or scattered around the globe.

It is easy to configure because, despite the large number of configuration

options available, only a few are required in most circumstances.

�systemd-timesync
The systemd-timesync service is intended to be a replacement for chrony

as a tool for managing NTP services. It uses a new command, timedatectl,

to manage NTP.

The systemd-timesync daemon provides an NTP implementation

that is easy to manage within a systemd context. It is installed by default

in Fedora and Ubuntu and started by default in Ubuntu and related

distributions but not in Fedora.

Chapter 6 Control Your Computer Time and Date with systemd

165

EXPERIMENT 6-4: PREPARATION

We’ve been using the default chronyd, so we need to stop and disable it.

systemctl disable --now chronyd
Removed /etc/systemd/system/multi-user.target.wants/chronyd.
service.

Verify that it is both stopped and disabled.

systemctl status chronyd
• chronyd.service - NTP client/server
 Loaded: �loaded (/usr/lib/systemd/system/chronyd.

service; disabled; vendor preset: enabled)
 Active: inactive (dead)
 Docs: man:chronyd(8)
 man:chrony.conf(5)

Now that the chronyd daemon is disabled, we can begin working with

systemd-timesync. We’ll begin using the timedatectl command in this

experiment.

EXPERIMENT 6-5: TRYING SYSTEMD-TIMESYNC

Check the status of timesyncd before starting. The systemd-timesync’s status

indicates whether systemd has initiated an NTP service. Because you have not

yet started systemd NTP, the timesync-status command returns no data.

timedatectl timesync-status
Failed to query server: Could not activate remote peer
'org.freedesktop.timesync1': activation request failed:
unknown unit

Chapter 6 Control Your Computer Time and Date with systemd

166

But a more simple status request provides some important information. For

example, the timedatectl command without an argument or options implies the

status sub-command as default.

timedatectl timesync-status
Failed to query server: Could not activate remote peer
'org.freedesktop.timesync1': activation request failed:
unknown unit
timedatectl status
 Local time: Wed 2024-11-13 13:25:41 EST
 Universal time: Wed 2024-11-13 18:25:41 UTC
 RTC time: Wed 2024-11-13 13:25:41
 Time zone: America/New_York (EST, -0500)
System clock synchronized: no
 NTP service: active
 RTC in local TZ: yes

Warning: The system is configured to read the RTC time in
the local time zone. This mode cannot be fully supported.
It will create various problems with time zone changes and
daylight saving time adjustments. The RTC time is never
updated, it relies on external facilities to maintain it. If
at all possible, use RTC in UTC by calling 'timedatectl set-
local-rtc 0'.

This command returns the local time for your host, the UTC time, and the

RTC time. It shows that the system time is set to the America/New_York

time zone (TZ), the RTC is set to the time in the local time zone, and the NTP

service is not active. The RTC time may start to drift a bit from the system

time. This is normal with systems whose clocks have not been synchronized.

The amount of drift on a host depends upon the amount of time since the

system was last synced and the speed of the drift per unit of time.

Chapter 6 Control Your Computer Time and Date with systemd

167

There is also a warning message about using local time for the RTC—this

relates to time zone changes and daylight saving time adjustments. If the

computer is off when changes need to be made, the RTC time will not change.

This is not an issue in servers or other hosts that are powered on 24/7. Also,

any service that provides NTP time synchronization will ensure the host is set

to the proper time early in the startup process, so it will be correct before it is

fully up and running.

Start the systemd-timesyncd daemon.

systemctl enable --now systemd-timesyncd
Created symlink '/etc/systemd/system/dbus-org.freedesktop.
timesync1.service' → '/usr/lib/systemd/system/systemd-
timesyncd.service'.
Created symlink '/etc/systemd/system/sysinit.target.wants/
systemd-timesyncd.service' → '/usr/lib/systemd/system/
systemd-timesyncd.service'.

Set the time zone for the computer. Usually, you set a computer’s time zone

during the installation procedure and never need to change it. However, there

are times it is necessary to change the time zone, and there are a couple of

tools to help. Linux uses time zone files to define the local time zone in use

by the host. These binary files are located in the /usr/share/zoneinfo directory.

The default for my time zone is defined by the link /etc/localtime -> ../usr/

share/zoneinfo/America/New_York. But you don’t need to know that to change

the time zone.

You need to know the official time zone name for your location. Suppose you

want to change the time zone to America, Los Angeles, you can list all time

zones. You can then search the data stream for the one you want.

Chapter 6 Control Your Computer Time and Date with systemd

168

timedatectl list-timezones | column
<SNIP>
America/La_Paz Atlantic/St_Helena
 Pacific/Guam
America/Lima Atlantic/Stanley
 Pacific/Honolulu
America/Los_Angeles Australia/ACT
 Pacific/Johnston
America/Louisville Australia/Adelaide
 Pacific/Kanton
America/Lower_Princes Australia/Brisbane
 Pacific/Kiritimati
<SNIP>

Note that “America” refers to North, Central, and South America.

If you know a bit of the name of the time zone you want, you could narrow it

down like this:

timedatectl list-timezones | grep -i los
America/Los_Angeles

or this:

timedatectl list-timezones | grep -i angeles
America/Los_Angeles

Now you can set the time zone. I used the date command to verify the change,

but you could also use timedatectl.

root@f41vm:~# date
Sun Nov 17 01:51:06 PM EST 2024
root@f41vm:~# timedatectl set-timezone America/Los_Angeles
root@f41vm:~# date
Sun Nov 17 10:51:52 AM PST 2024

Now change your host’s time zone back to your local one.

Chapter 6 Control Your Computer Time and Date with systemd

169

�Configure systemd-timesyncd
The configuration file for systemd-timesyncd is /etc/systemd/timesyncd.

conf. It’s a simple file with fewer options included than chronyd.

EXPERIMENT 6-6: CONFIGURING SYSTEMD-TIMESYNCD

Let’s look at the configuration file for systemd-timesyncd, /usr/lib/systemd/

timesyncd.conf.

Here are the complete contents of the default version of this file on my

Fedora VM:

This file is part of systemd.
#
�systemd is free software; you can redistribute it and/or

modify it under the
�terms of the GNU Lesser General Public License as

published by the Free
�Software Foundation; either version 2.1 of the License,

or (at your option)
any later version.
#
�Entries in this file show the compile time defaults. Local
configuration

�should be created by either modifying this file (or a copy
of it placed in

�/etc/ if the original file is shipped in /usr/), or by
creating "drop-ins" in

�the /etc/systemd/timesyncd.conf.d/ directory. The latter
is generally

Chapter 6 Control Your Computer Time and Date with systemd

170

�recommended. Defaults can be restored by simply deleting
the main

configuration file and all drop-ins located in /etc/.
#
�Use 'systemd-analyze cat-config systemd/timesyncd.conf' to
display the full config.

#
See timesyncd.conf(5) for details.

[Time]
#NTP=
#FallbackNTP=0.fedora.pool.ntp.org 1.fedora.pool.ntp.org
2.fedora.pool.ntp.org 3.fedora.pool.ntp.org
#RootDistanceMaxSec=5
#PollIntervalMinSec=32
#PollIntervalMaxSec=2048
#ConnectionRetrySec=30
#SaveIntervalSec=60

The only section it contains besides comments is [Time], and all the lines are

commented out. These are the default values and do not need to be changed

or uncommented (unless you have some reason to do so). If you do not have

a specific NTP time server defined in the NTP= line, Fedora’s default is to fall

back on the Fedora pool of time servers. I like to add the time server on my

network to this line and uncomment it. If that server’s not available, one is

selected from the fallback list.

NTP=myntpserver

Chapter 6 Control Your Computer Time and Date with systemd

171

�Start timesyncd
Starting and enabling systemd-timesyncd is just like any other service. So

let’s do that now.

EXPERIMENT 6-7: STARTING SYSTEMD-TIMESYNCD

Enable systemd-timesync and start it at the same time.

systemctl enable systemd-timesyncd.service
Created symlink '/etc/systemd/system/dbus-org.freedesktop.
timesync1.service' → '/usr/lib/systemd/system/systemd-
timesyncd.service'.
Created symlink '/etc/systemd/system/sysinit.target.wants/
systemd-timesyncd.service' → '/usr/lib/systemd/system/
systemd-timesyncd.service'.

Now check its status.

systemctl status systemd-timesyncd.service
• systemd-timesyncd.service - Network Time Synchronization

 Loaded: �loaded (/usr/lib/systemd/system/systemd-
timesyncd.service; enabled; preset: disabled)

 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf, 50-keep-warm.conf
 Active: �active (running) since Mon 2024-11-18 16:12:23

EST; 4min 18s ago
 Invocation: 7be78fc9f690442ca2ef540db009e663
 Docs: man:systemd-timesyncd.service(8)
 Main PID: 1774 (systemd-timesyn)
 Status: �"Contacted time server 137.190.2.4:123

(0.fedora.pool.ntp.org)."

Chapter 6 Control Your Computer Time and Date with systemd

172

 Tasks: 2 (limit: 19131)
 Memory: 1.4M (peak: 1.9M)
 CPU: 93ms
 CGroup: �/system.slice/systemd-timesyncd.

serviceExercise Head8
 └─1774 /usr/lib/systemd/systemd-timesyncd

Nov 18 16:12:23 f41vm.both.oreg systemd[1]: Starting
systemd-timesyncd.service - Network Time Synchronization...
Nov 18 16:12:23 f41vm.both.oreg systemd-timesyncd[1774]:
The system is configured to read the RTC time in the local
time zone.>
Nov 18 16:12:23 f41vm.both.oreg systemd[1]: Started systemd-
timesyncd.service - Network Time Synchronization.

�Set the Hardware Clock
Maintaining accurate time on the system hardware clock is as important as

the Linux operating system clock. The hardware clock is also known as the

real-time clock (RTC) and the CMOS clock.

The primary reason for this—in my experience—is that from the

moment the system is booted, through much of the Linux startup

sequence until the network is up and running, the hardware clock is

the one being used for journal and log timestamps. If those are far from

correct, it becomes difficult to trace the time sequence of boot problems.

I’ve worked on computers that had a dead CMOS battery and the

hardware time always started at 00:00:00 UTC on January 1, 1970.6 All

Unix and Linux computers count the time in seconds from that date. So

all logs and journal entries started in 1970 and, when the network became

available to sync with an NTP server, switched to the true current time.

6 Wikipedia, “Unix Time,” https://en.wikipedia.org/wiki/Unix_time

Chapter 6 Control Your Computer Time and Date with systemd

https://en.wikipedia.org/wiki/Unix_time

173

EXPERIMENT 6-8: SETTING THE HARDWARE CLOCK

Let’s start by using timedatectl to view the system’s current time status. Here’s

what one of my systems looked like after starting timesyncd:

timedatectl
 Local time: Mon 2024-11-18 16:36:44 EST
 Universal time: Mon 2024-11-18 21:36:44 UTC
 RTC time: Mon 2024-11-18 16:36:43
 Time zone: America/New_York (EST, -0500)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: yes

Warning: The system is configured to read the RTC time in
the local time zone. This mode cannot be fully supported.
It will create various problems with time zone changes and
daylight saving time adjustments. The RTC time is never
updated, it relies on external facilities to maintain it.
If at all possible, use RTC in UTC by calling 'timedatectl
set-local-rtc 0'.

The RTC time is around a second off from local time (EDT), and the

discrepancy grew by a couple more seconds over the next few days. This

growing discrepancy was due to the fact that I had no process in place to

synchronize the RTC.

Because RTC does not have the concept of time zones, the timedatectl

command must do a comparison to determine which time zone is a match. If

the RTC time does not match local time exactly, it is not considered to be in

the local time zone.

Chapter 6 Control Your Computer Time and Date with systemd

174

In search of a bit more information, I checked the status of systemd-timesync.

service.7

systemctl status systemd-timesyncd.service
• systemd-timesyncd.service - Network Time Synchronization
 Loaded: �loaded (/usr/lib/systemd/system/systemd-

timesyncd.service; enabled; vendor preset:
disabled)

 Active: �active (running) since Sat 2020-05-16 13:56:53
EDT; 18h ago

 Docs: man:systemd-timesyncd.service(8)
 Main PID: 822 (systemd-timesyn)
 Status: �"Initial synchronization to time server

163.237.218.19:123 (2.fedora.pool.ntp.org)."
 Tasks: 2 (limit: 10365)
 Memory: 2.8M
 CPU: 476ms
 CGroup: /system.slice/systemd-timesyncd.service
 └─822 /usr/lib/systemd/systemd-timesyncd

May 16 09:57:24 testvm2.both.org systemd[1]: Starting
Network Time Synchronization...
May 16 09:57:24 testvm2.both.org systemd-timesyncd[822]:
System clock time unset or jumped backwards, restoring from
recorded timestamp: Sat 2020-05-16 13:56:53 EDT
May 16 13:56:53 testvm2.both.org systemd[1]: Started Network
Time Synchronization.
May 16 13:57:56 testvm2.both.org systemd-timesyncd[822]:
Initial synchronization to time server 163.237.218.19:123
(2.fedora.pool.ntp.org).

7 Note that I couldn’t reproduce this when writing this book, so I used original data
from an article I wrote in 2020.

Chapter 6 Control Your Computer Time and Date with systemd

175

Notice the log message that says the system clock time was unset or jumped

backward. The timesyncd service sets the system time from a timestamp.

Timestamps are maintained by the timesyncd daemon and are created at each

successful time synchronization.

The timedatectl command does not have the ability to set the value of the

hardware clock from the system clock; it can only set the time and date from a

value entered on the command line. However, you can set the RTC to the same

value as the system time by using the hwclock command.

/sbin/hwclock --systohc --localtime
timedatectl
 Local time: Mon 2020-05-18 13:56:46 EDT
 Universal time: Mon 2020-05-18 17:56:46 UTC
 RTC time: Mon 2020-05-18 13:56:46
 Time zone: America/New_York (EDT, -0400)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: yes

The --localtime option ensures that the hardware clock is set to local time,

not UTC.

�Do You Really Need RTC?
Any NTP implementation will set the system clock during the startup

sequence, so is RTC necessary? Not really, so long as you have a network

connection to a time server. However, many systems do not have full-

time access to a network connection and the hardware clock is useful so

that Linux can read it and set the system time. This is a better solution

than having to set the time by hand, even if it might drift away from the

actual time.

Chapter 6 Control Your Computer Time and Date with systemd

176

�Summary
This chapter explored the use of some systemd tools for managing date,

time, and time zones. The systemd-timesyncd tool provides a decent NTP

client that can keep time on a local host synchronized with an NTP server.

However, systemd-timesyncd does not provide a server service, so if you

need an NTP server on your network, you must use something else, such

as chrony, to act as a server.

I prefer to have a single implementation for any service in my network,

so I use chrony on all my hosts. If you do not need a local NTP server, or if

you do not mind dealing with chrony for the server and systemd-

timesyncd for the client and you do not need chrony’s additional

capabilities, then systemd-timesyncd is a serviceable choice for an

NTP client.

There is another point I want to make: you do not have to use systemd

tools for NTP implementation. You can use chrony or some other NTP

implementation. systemd is composed of a large number of services; many

of them are optional, so they can be disabled and something else used

in its place. It is not the huge, monolithic monster that some make it out

to be. It is OK to not like systemd or parts of it, but you should make an

informed decision.

I don’t dislike systemd’s implementation of NTP, but I much prefer

chrony because it better meets my needs. And that is what Linux is

all about.

Chapter 6 Control Your Computer Time and Date with systemd

177

�Exercises
Perform these exercises to complete this chapter:

	 1.	 List at least four reasons why it’s important for

modern computers to maintain the correct time.

	 2.	 Describe the function of the RTC?

	 3.	 What is NTP?

	 4.	 Describe how NTP works.

	 5.	 What NTP server is your host using to synchronize?

	 6.	 What stratum is that server?

	 7.	 Which NTP implementation provides the most

status information for the SysAdmin?

	 8.	 Which do you prefer: chrony or systemd-timesyncd?

	 9.	 Why?

Chapter 6 Control Your Computer Time and Date with systemd

179© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_7

CHAPTER 7

Analyzing systemd
Calendar and Time
Spans

�Objectives
In this chapter, you will learn

•	 To analyze systemd calendar and time spans

•	 To properly understand and interpret timestamps

•	 To describe the level of accuracy obtainable when

using calendar event times for event triggers

•	 To create calendar event expressions that trigger events

at the required times and define time spans when

searching the systemd journal for events

•	 To analyze systemd timestamps

https://doi.org/10.1007/979-8-8688-1328-3_7#DOI

180

�Overview
In our past encounters with systemd, we have seen that it uses calendar

time, specifying one or more moments in time to trigger events such as

a backup program, and the manner in which entries in the journal are

timestamped. systemd can also use time spans which define the amount

of time between two events but which are not directly tied to specific

calendar times.

In this chapter, we will look in more detail at the way in which time and

date are used and specified. Because two slightly different, noncompatible

formats can be used, it is important to identify these and how and when

they can be used. We will also use time and the systemd journals to explore

and manage Linux startup in detail. All of this is very dependent upon time

and our understanding of how to read and specify it in the commands we

use. So that’s where we will start.

�Definitions
Time-related commands in systemd use some terms that we need to

understand more fully, so let’s start with some definitions. The systemd.

time(7) man page has a complete description of time and date expressions

that can be used in timers and other systemd tools.

�Absolute Timestamp
An absolute timestamp is a single unambiguous and unique point in time

as defined in the format YYYY-MM-DD HH:MM:SS. The timestamp format

is used to specify points in time at which events are triggered by timers.

An absolute timestamp can represent only a single point in time, such as

2025-04-15 13:21:05.

Chapter 7 Analyzing systemd Calendar and Time Spans

181

�Accuracy
Accuracy is the quality of closeness to the true time. It refers to how

close to the specified calendar time an event is triggered by a timer. The

default accuracy for systemd timers is defined as the one-minute time

span starting at the defined calendar time. An event specified to occur at

the OnCalendar time of 09:52:17 might actually be triggered at any time

between that and 09:53:17.

�Calendar Event
Calendar events are one or more specific times specified by a systemd

timestamp format, YYYY-MM-DD HH:MM:SS. These can be a single point

in time or at a series of points that are well-defined and for which the exact

times can be calculated. Timestamps are also used by the systemd journals

to mark each event with the exact time it occurred.

An exact moment in time as specified in systemd in the timestamp

format, YYYY-MM-DD HH:MM:SS. When only the YYYY-MM-DD portion

is specified, the time defaults to 00:00:00. When only the HH:MM:SS

portion is specified, the date is arbitrarily defined to be that of the next

calendar instance of that time. If the time specified is before the current

time today, the next instance will be tomorrow, and if the specified time

is later than the current time, the next instance will be today. This is the

format used for expression of the OnCalendar times in a systemd timer.

Recurring calendar events can be specified using special characters

and formats to represent fields that have multiple value matches. For

example, 2026-08-15..25 12:15:00 represents 12:15PM of the 15th through

the 25th of August 2026 and would trigger eleven matches. Calendar events

can also be specified with an absolute timestamp.

Chapter 7 Analyzing systemd Calendar and Time Spans

182

�Time Span
Time span is the amount of time between two events; it is the duration of

something such as an event or the time between two events. Time spans

can be used in specifying the desired accuracy with which an event should

be triggered by a timer as well as in defining the time to elapse between

events. The following units are recognized:

•	 usec, us, μs

•	 msec, ms

•	 seconds, second, sec, s

•	 minutes, minute, min, m

•	 hours, hour, hr, h

•	 days, day, d

•	 weeks, week, w

•	 months, month, M (defined as 30.44 days)

•	 years, year, y (defined as 365.25 days)

�Calendar Event Expressions
Calendar event expressions are a key component of tasks such as

specifying time ranges for journal searches and triggering timers at

desired repetitive times. systemd itself and its timers use a different style

for time and date expressions than the format used in crontab. It is more

flexible than crontab and allows fuzzy dates and times in the manner of

the at command. It should also be familiar enough that it will be easy to

understand.

Chapter 7 Analyzing systemd Calendar and Time Spans

183

The format for calendar event expressions using OnCalendar= is DOW

YYYY-MM-DD HH:MM:SS. The DOW (day of week) is optional and other

fields can use an asterisk (*) to match any value for that position. If the

time is not specified, it is assumed to be 00:00:00. If the date is not specified

but the time is, the next match may be today or tomorrow depending upon

the current time. All of the various calendar time expression formats are

converted to a normalized form for use. The systemd-analyze calendar

command shows the normalized form of the time expression.

systemd provides us with an excellent tool for validating and

examining calendar events that are to be used in an expression. The

systemd-analyze calendar tool will parse a calendar time event expression

and provide the normalized form as well as other interesting information

such as the date and time of the next “elapse,” that is, match, and the

approximate amount of time before the trigger time is reached.

The commands used in this section can be performed by non-root

users, but the data displayed for some commands will not be as complete

as for the root user. So I suggest you perform all of the experiments in this

chapter as the root user.

�Exploring systemd Time Syntax
There are two different modes of time syntax. This seems confusing at first,

but the two modes are used in different manners.

systemd uses calendar time syntax to specify times to trigger events

using timers and to describe the time span between two events. The

second mode is used for timestamps in the systemd journals.

�Calendar Events

The correct systemd time syntax is important when used to trigger events

with timers. It’s significantly different from the crontab syntax so needs

some explanation and experimentation.

Chapter 7 Analyzing systemd Calendar and Time Spans

184

The systemd-analyze calendar command provides a tool for exploring

the systemd time syntax and verifying that the times we specify are correct.

EXPERIMENT 7-1: SYSTEMD CALENDAR TIME SYNTAX

This experiment introduces the systemd time syntax. While it can appear

complex at first, it makes sense when you’ve experimented with it.

Perform this experiment as a non-root user.

Let’s start with a date in the future without a time. Because all of the date unit

fields are explicitly specified, this is a one-time event. In this case, the time

is not specified, so the event timer would trigger at 00:00:00 hours on the

specified date.

$ systemd-analyze calendar 2030-06-17
 Original form: 2030-06-17
Normalized form: 2030-06-17 00:00:00
 Next elapse: Mon 2030-06-17 00:00:00 EDT
 (in UTC): Mon 2030-06-17 04:00:00 UTC
 From now: 5 years 6 months left

Tip T he times for “Next elapse” and “UTC” will differ based on your
local time zone.

Now let’s add a time. In this example, the date and time are analyzed

separately as non-related entities.

$ systemd-analyze calendar 2030-06-17 15:21:16
 Original form: 2030-06-17
Normalized form: 2030-06-17 00:00:00
 Next elapse: Mon 2030-06-17 00:00:00 EDT
 (in UTC): Mon 2030-06-17 04:00:00 UTC
 From now: 5 years 6 months left

Chapter 7 Analyzing systemd Calendar and Time Spans

185

 Original form: 15:21:16
Normalized form: *-*-* 15:21:16
 Next elapse: Mon 2024-11-25 15:21:16 EST
 (in UTC): Mon 2024-11-25 20:21:16 UTC
 From now: 1h 33min left

To analyze the date and time as a single entity, enclose them together

in quotes.

$ systemd-analyze calendar "2030-06-17 15:21:16"
Normalized form: 2030-06-17 15:21:16
 Next elapse: Mon 2030-06-17 15:21:16 EDT
 (in UTC): Mon 2030-06-17 19:21:16 UTC
 From now: 5 years 6 months left

Now specify a time earlier than the current time and one later. In this case, the

current time was approximately 13:50 on 2024-11-25.

$ systemd-analyze calendar 05:21:16 22:15
 Original form: 05:21:16
Normalized form: *-*-* 05:21:16
 Next elapse: Tue 2024-11-26 05:21:16 EST
 (in UTC): Tue 2024-11-26 10:21:16 UTC
 From now: 15h left

 Original form: 22:15
Normalized form: *-*-* 22:15:00
 Next elapse: Mon 2024-11-25 22:15:00 EST
 (in UTC): Tue 2024-11-26 03:15:00 UTC
 From now: 8h left

Chapter 7 Analyzing systemd Calendar and Time Spans

186

The systemd-analyze calendar tool does not work on timestamps.

So things like “tomorrow” or “today” will cause errors when used with the

calendar sub-command because they are timestamps rather than OnCalendar

time formats.

$ systemd-analyze calendar "tomorrow"
Failed to parse calendar expression 'tomorrow': Invalid
argument
Hint: this expression is a valid timestamp. Use 'systemd-
analyze timestamp "tomorrow"' instead?

When used as a timestamp, the term “tomorrow” will always resolve to

tomorrow’s date and a time of 00:00:00. You must use the normalized

expression format, “YYYY-MM-DD HH:MM:SS,” for this tool to work in calendar

mode. Despite this, the systemd-analyze calendar tool can still help

you to understand the structure of the calendar time expressions used by

systemd timers. I recommend reading the systemd.time(7) man page for

a more complete understanding of the time formats that can be used with

systemd timers.

�Timestamps

Whereas calendar times can be used to match single or multiple points

in time, timestamps unambiguously represent a single point in time. For

example, timestamps in the systemd journal refer to a precise moment in

time when each logged event occurred.

Chapter 7 Analyzing systemd Calendar and Time Spans

187

EXPERIMENT 7-2: EXPLORING SYSTEMD TIMESTAMPS

The systemd journal uses timestamps, so let’s look at a few of those from

today, as I write this. The -S option to the journalctl command specifies the

start time we want to begin with. The “S” officially stands for the term “since,”

which can also be used

journalctl -S today
Dec 03 00:00:37 testvm1.both.org systemd[1]: Starting
sysstat-collect.service - system activity accounting tool...
Dec 03 00:00:37 testvm1.both.org systemd[1]: Starting
sysstat-rotate.service - system activity accounting tool...
Dec 03 00:00:37 testvm1.both.org systemd[1]: Starting
unbound-anchor.service - update of the root trust anchor
for DNSSE>
Dec 03 00:00:37 testvm1.both.org systemd[1]: sysstat-collect.
service: Deactivated successfully.
Dec 03 00:00:37 testvm1.both.org systemd[1]: Finished
sysstat-collect.service - system activity accounting tool.
Dec 03 00:00:37 testvm1.both.org audit[1]: SERVICE_
START pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit=sysstat-co>
Dec 03 00:00:37 testvm1.both.org audit[1]: SERVICE_STOP pid=1
uid=0 auid=4294967295 ses=4294967295 msg='unit=sysstat-col>
Dec 03 00:00:37 testvm1.both.org systemd[1]: sysstat-rotate.
service: Deactivated successfully.
Dec 03 00:00:37 testvm1.both.org systemd[1]: Finished
sysstat-rotate.service - system activity accounting tool.
Dec 03 00:00:37 testvm1.both.org audit[1]: SERVICE_
START pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit=sysstat-ro>

Chapter 7 Analyzing systemd Calendar and Time Spans

188

Dec 03 00:00:37 testvm1.both.org audit[1]: SERVICE_STOP pid=1
uid=0 auid=4294967295 ses=4294967295 msg='unit=sysstat-rot>
<SNIP>
Dec 03 00:01:00 testvm1.both.org CROND[133534]: (root) CMDEND
(run-parts /etc/cron.hourly)
Dec 03 00:07:37 testvm1.both.org systemd[1]: Starting
sysstat-summary.service - Generate a daily summary of
process acco>
Dec 03 00:07:37 testvm1.both.org systemd[1]: sysstat-summary.
service: Deactivated successfully.
Dec 03 00:07:37 testvm1.both.org systemd[1]: Finished
sysstat-summary.service - Generate a daily summary of
procesDec 03 00:00:37 testvm1.both.org systemd[1]: Starting
sysstat-collect.service - system activity accounting tool...
Dec 03 00:00:37 testvm1.both.org systemd[1]: Starting
sysstat-rotate.service - system activity accounting tool...
Dec 03 00:00:37 testvm1.both.org systemd[1]: Starting
unbound-anchor.service - update of the root trust anchor
for DNSSE>
Dec 03 00:00:37 testvm1.both.org systemd[1]: sysstat-collect.
service: Deactivated successfully.
Dec 03 00:00:37 testvm1.both.org systemd[1]: Finished
sysstat-collect.service - system activity accounting tool.
Dec 03 00:00:37 testvm1.both.org audit[1]: SERVICE_
START pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit=sysstat-co>
Dec 03 00:00:37 testvm1.both.org audit[1]: SERVICE_STOP pid=1
uid=0 auid=4294967295 ses=4294967295 msg='unit=sysstat-col>
Dec 03 00:00:37 testvm1.both.org systemd[1]: sysstat-rotate.
service: Deactivated successfully.

Chapter 7 Analyzing systemd Calendar and Time Spans

189

Dec 03 00:00:37 testvm1.both.org systemd[1]: Finished
sysstat-rotate.service - system activity accounting tool.
<SNIP>

The systemd-analyze timestamp command can be used to analyze

timestamp expressions in the same manner that we analyzed calendar

expressions. Let’s look at one of these times from the journal data stream and

one from a couple years in the past.

$ systemd-analyze timestamp "Dec 03 11:28:07"
 Original form: Dec 03 11:28:07
Normalized form: Tue 2024-12-03 11:28:07 EST
 (in UTC): Tue 2024-12-03 16:28:07 UTC
 UNIX seconds: @1733243287
 From now: 9min ago
$ systemd-analyze timestamp "Wed 2020-06-17 10:08:41"
 Original form: Wed 2020-06-17 10:08:41
Normalized form: Wed 2020-06-17 10:08:41 EDT
 (in UTC): Wed 2020-06-17 14:08:41 UTC
 UNIX seconds: @1592402921
 From now: 4 years 5 months ago

These two timestamps are formatted differently, but any unambiguously

expressed time, such as “2020-06-17 10:08:41,” is a timestamp because it

can only occur once. A timestamp that will occur in the future can also be used

in a systemd timer, and that timer will only trigger its defined action once.

A time expressed somewhat more ambiguously, such as “2025-*-* 22:15:00,”

can only be a calendar time to be used in the OnCalendar statement in a timer

unit file. This expression will trigger an event every day in the year 2025 at

22:15:00 (10:15:00PM).

Chapter 7 Analyzing systemd Calendar and Time Spans

190

The journalctl command tool has some options that can display the

timestamps in format that we can easily use with the systemd-analyze tool.

$ journalctl -o short-full
Tue 2024-12-03 10:20:06 EST testvm1.both.org systemd[1]:
Starting sysstat-collect.service - system activity
accounting t>
Tue 2024-12-03 10:20:06 EST testvm1.both.org systemd[1]:
sysstat-collect.service: Deactivated successfully.
Tue 2024-12-03 10:20:06 EST testvm1.both.org systemd[1]:
Finished sysstat-collect.service - system activity
accounting t>
Tue 2024-12-03 10:20:06 EST testvm1.both.org audit[1]:
SERVICE_START pid=1 uid=0 auid=4294967295 ses=4294967295
msg='uni>
Tue 2024-12-03 10:20:06 EST testvm1.both.org audit[1]:
SERVICE_STOP pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit>
Tue 2024-12-03 10:30:06 EST testvm1.both.org systemd[1]:
Starting sysstat-collect.service - system activity
accounting t>
Tue 2024-12-03 10:30:06 EST testvm1.both.org systemd[1]:
sysstat-collect.service: Deactivated successfully.
Tue 2024-12-03 10:30:06 EST testvm1.both.org systemd[1]:
Finished sysstat-collect.service - system activity
accounting t>
<SNIP>

We can also display the journal timestamps in a monotonic format which

shows the number of seconds since startup.

$ journalctl -S today -o short-monotonic

Chapter 7 Analyzing systemd Calendar and Time Spans

191

[6269.847404] testvm1.both.org systemd[1]: Finished
sysstat-collect.service - system activity accounting tool.
[6269.846450] testvm1.both.org audit[1]: SERVICE_START pid=1
uid=0 auid=4294967295 ses=4294967295 msg='unit=sysstat-col>
[6269.847449] testvm1.both.org audit[1]: SERVICE_STOP pid=1
uid=0 auid=4294967295 ses=4294967295 msg='unit=sysstat-coll>
[6869.775575] testvm1.both.org systemd[1]: Starting
sysstat-collect.service - system activity accounting tool...
[6869.871332] testvm1.both.org systemd[1]: sysstat-collect.
service: Deactivated successfully.
[6869.871678] testvm1.both.org systemd[1]: Finished
sysstat-collect.service - system activity accounting tool.
<SNIP>

Be sure to read the journalctl man page for, among other things, a

complete list of the timestamp format options.

�Time Spans

Time spans are primarily used in systemd timers to define a specific span

of time between events. This could be used to trigger events so that they

occur a specified amount of time after system startup or after a previous

instance of the same event. A sample expression to trigger an event 32

minutes after system startup would look like this in the timer unit file.

OnStartupSec=32m

The default accuracy for triggering systemd timers is a time window

starting at the specified time and lasting for one minute. You can specify a

narrower trigger time span accuracy to within a microsecond by adding a

statement like the following one to the Timer section of the timer unit file:

AccuracySec=1us

Chapter 7 Analyzing systemd Calendar and Time Spans

192

EXPERIMENT 7-3: EXPLORING TIME SPANS

The systemd-analyze timespan command can help ensure that you are

using a valid time span in the unit file. The following samples will get you

started:

systemd-analyze timespan 15days
Original: 15days
 μs: 1296000000000
 Human: 2w 1d
systemd-analyze timespan "15days 6h 32m"
Original: 15days 6h 32m
 μs: 1319520000000
 Human: 2w 1d 6h 32min

Experiment with these and some of your own:

•	 “255days 6h 31m”

•	 “255days 6h 31m 24.568ms”

Time spans are used to schedule timer events a specified interval

after a defined event such as startup. Calendar timestamps can be used to

schedule timer events on specific calendar days and times either as one-

offs or repeating. Timestamps are also used on systemd journal entries

although not in a default format that can be used directly in tools like

systemd-analyze.

Chapter 7 Analyzing systemd Calendar and Time Spans

193

�Summary
This was all more than just a little confusing to me when I first started

working with systemd timers and creating calendar and timestamp

expressions that would trigger events. That was partly because of the

similar but not quite identical formats used for specifying timestamps and

calendar event trigger times.

This chapter covered creating and analyzing calendar, timestamp, and

time span expressions. We’ll use these in the following chapters.

�Exercises
Perform these exercises to complete this chapter:

	 1.	 Create an expression that could be used by a

timer to schedule an event at 1:45AM on January 1

every year.

	 2.	 Create an expression that would be used to perform

a daily backup at 1:00AM.

	 3.	 Why might you want to schedule a timer for a

specific amount of time after a system boots?

	 4.	 How can you determine the amount of time in

human-readable format since a system booted that

an event occurred?

Chapter 7 Analyzing systemd Calendar and Time Spans

195© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_8

CHAPTER 8

Using systemd Timers

�Objectives
In this chapter, you will learn

•	 More about using the systemctl command

•	 How to view the existing systemd maintenance timers

•	 To test calendar event expressions

•	 To create a Bash program that will be used by a timer

•	 To create a timer

•	 To describe and create the different types of timers

�Overview
Every one of my physical computers and VMs has at least nine active

timers. Each of those timers triggers a program—usually a Bash script—

that performs a specific maintenance task. systemd timers provide a more

fine-grained control of events than cronjobs and offer more interesting and

flexible scheduling possibilities.

https://doi.org/10.1007/979-8-8688-1328-3_8#DOI

196

A couple years ago, I converted most of my cron jobs to systemd

timers. I had used timers for a few years, but usually, I learned just enough

to perform the specific task I was working on. While doing research

on systemd, I learned that systemd timers have some very interesting

capabilities.

Like cron jobs, systemd timers can trigger events—shell scripts and

compiled programs—at specified time intervals, such as once a day, on

a specific day of the month (perhaps only if it is a Monday), or every 15

minutes during business hours from 8AM to 6PM.

But timers can do some things that cron jobs cannot. For example, a

timer can trigger a program to run a specific amount of time after an event

such as boot, startup, completion of a previous task, or even the previous

completion of the service unit called by the timer.

Some timers that are active by default may not be required, so we’ll

look at those and how to disable them. There is some overlap of cron jobs

and systemd timers that we’ll also investigate.

�System Maintenance Timers
When Fedora or any systemd-based distribution is installed on a new

system, it creates several timers that are part of the system maintenance

procedures that happen in the background of any Linux host. These timers

trigger events necessary for common maintenance tasks, such as updating

system databases, cleaning temporary directories, rotating log files,

and more.

As an example, let’s look at the timers on my VM.

Chapter 8 Using systemd Timers

https://www.both.org/?p=3685

197

EXPERIMENT 8-1: LOOKING AT SYSTEMD TIMERS

Let’s examine the timers. This experiment should be performed as a non-

root user.

First, we’ll just do a simple list. I know the font is small for the result, but it

gives a better sense of what you should see while still being somewhat legible.

$ systemctl -t timer
 UNIT LOAD ACTIVE SUB
 DESCRIPTION
 fstrim.timer loaded active waiting
 Discard unused filesystem blocks once a week
 logrotate.timer loaded active waiting
 Daily rotation of log files
 plocate-updatedb.timer loaded active waiting
 Update the plocate database daily
 raid-check.timer loaded active waiting
 Weekly RAID setup health check
 sysstat-collect.timer loaded active waiting
 Run system activity accounting tool every 10 minutes
 sysstat-rotate.timer loaded active waiting
 Rotate daily system activity data file at midnight
 sysstat-summary.timer loaded active waiting
 Generate summary of yesterday's process accounting
 systemd-tmpfiles-clean.timer loaded active waiting
 Daily Cleanup of Temporary Directories
 unbound-anchor.timer loaded active waiting
 daily update of the root trust anchor for DNSSEC

Chapter 8 Using systemd Timers

198

Legend: LOAD → �Reflects whether the unit definition was
properly loaded.

 �ACTIVE → �The high-level unit activation state, i.e.
generalization of SUB.

 SUB → �The low-level unit activation state, values
depend on unit type.

9 loaded units listed. Pass --all to see loaded but inactive
units, too.
To show all installed unit files use 'systemctl list-
unit-files'.

This list contains only the timers that are loaded and active. As the text at the

end of the data stream says, you can use the --all option to also list the units

that are inactive.

$ systemctl --all -t timer
<SNIP>

In this case, there are no inactive timer units, but the active ones are still

displayed.

Now let’s display more detail about the active timers. The asterisk symbol

works the same as it does for file globbing, so this command lists all systemd

timer units. I’ve truncated this data stream for brevity, and I’ve once again

used a smaller font size, but not quite so small as last time.

$ systemctl status *timer
<SNIP>
• sysstat-summary.timer - Generate summary of yesterday's
process accounting
 Loaded: �loaded (/usr/lib/systemd/system/sysstat-

summary.timer; enabled; preset: enabled)
 Active: �active (waiting) since Tue 2024-12-03 21:14:13

EST; 18h ago

Chapter 8 Using systemd Timers

199

 Invocation: f446503972c54200b9da56898b404b8f
 Trigger: Thu 2024-12-05 00:07:00 EST; 7h left
 �Triggers: • sysstat-summary.service

Dec 03 21:14:13 testvm1.both.org systemd[1]: Started
sysstat-summary.timer - Generate summary of yesterday's
process accounting.

• systemd-tmpfiles-clean.timer - Daily Cleanup of Temporary
Directories
 Loaded: �loaded (/usr/lib/systemd/system/systemd-

tmpfiles-clean.timer; static)
 Active: �active (waiting) since Tue 2024-12-03 21:14:13

EST; 18h ago
 Invocation: c82023d1e0844d04886965dae75f2c1d
 Trigger: �Wed 2024-12-04 21:29:44 EST; 5h 18min

leftmimedefang-filter
 Triggers: • systemd-tmpfiles-clean.service
 Docs: man:tmpfiles.d(5)
 man:systemd-tmpfiles(8)

Dec 03 21:14:13 testvm1.both.org systemd[1]: Started
systemd-tmpfiles-clean.timer - Daily Cleanup of Temporary
Directories.

• fstrim.timer - Discard unused filesystem blocks
once a week
 Loaded: �loaded (/usr/lib/systemd/system/fstrim.timer;

enabled; preset: enabled)
 Active: �active (waiting) since Tue 2024-12-03 21:14:13

EST; 18h ago

Chapter 8 Using systemd Timers

200

 Invocation: 45c67bf52dc64dd889a54ce59d569ba2
 Trigger: Mon 2024-12-09 00:21:50 EST; 4 days left
 Triggers: • fstrim.service
 Docs: man:fstrim

Dec 03 21:14:13 testvm1.both.org systemd[1]: Started fstrim.
timer - Discard unused filesystem blocks once a week.

• sysstat-collect.timer - Run system activity accounting
tool every 10 minutes
 Loaded: �loaded (/usr/lib/systemd/system/sysstat-

collect.timer; enabled; preset: enabled)
 Active: �active (waiting) since Tue 2024-12-03 21:14:13

EST; 18h ago
 Invocation: 2b38695d2d3f44e4ba4c5d6d6b069144
 Trigger: Wed 2024-12-04 16:20:00 EST; 8min left
 Triggers: • sysstat-collect.service

Dec 03 21:14:13 testvm1.both.org systemd[1]: Started
sysstat-collect.timer - Run system activity accounting tool
every 10 minutes.
<SNIP>

Each timer has at least six lines of information associated with it in this listing:

•	 The first line has the timer’s filename and a short description of

its purpose.

•	 The second line displays the timer’s status, whether it is loaded,

the full path to the timer unit file, and the vendor preset.

•	 The third line indicates its active status, which includes the $

systemctl --all -t timer.

•	 The fourth line contains the date and time the timer will be

triggered next and an approximate time until the trigger occurs.

Chapter 8 Using systemd Timers

201

•	 The fifth line shows the name of the event or the service that is

triggered by the timer.

•	 Some (but not all) systemd unit files have pointers to the

relevant documentation. Three of the timers in my virtual

machine’s output have pointers to documentation. This is a nice

(but optional) bit of data.

•	 The final line is the journal entry for the most recent instance of

the service triggered by the timer.

Here’s another way to look at the list of timers. The results of this command

are too wide to show here even with a reduced font. However, it shows a

timestamp indicating the next time the timer will activate, how much time

remains before the next activation, a timestamp of the most recent previous

activation, the amount of time passed since then, the timer unit, and the

service unit activated by the timer.

systemctl list-timers

Depending upon your host, you may have some different timers, but these are

the ones you’ll be most likely to see.

You can see in Experiment 8-1 that these timers trigger events that are

critical to the maintenance of your Linux host.

The fstrim.timer activates once a week and cleans up discarded file

blocks in SSD storage devices. This is important because SSDs don’t

release the space allocated to deleted files until fstrim is run. If your

computer complains because your SSD doesn’t have enough space, you

might try running the fstrim.timer more frequently than once a week. You

might also consider using a larger SSD.

Chapter 8 Using systemd Timers

202

The three timers for sysstat manage all the processes required to

collect and process the data used by the sar command. The sar command

uses that collected data to report all of the system performance data in one

place that you can view separately in the many other SysAdmin tools. Use

man sar to read about this powerful command.

�Creating a Timer
Although we could deconstruct one or more of the existing timers to learn

how they work, let’s create our own service unit and a timer unit to trigger

it. We’ll use a fairly trivial example in order to keep this simple. After we

have finished this, it will be easier to understand how the other timers

work and to determine what they are doing.

EXPERIMENT 8-2: CREATING A TIMER

Perform this experiment as root user.

First, create a simple service that will run something basic, such as the free

command. For example, you may want to monitor free memory at regular

intervals. Create the following unit file in the /usr/local/lib/systemd/
system directory.1 Name it myMonitor.timer. It does not need to be executable.

This service unit is for testing timer units
Copyright David Both, 2025
GNU All-Permissive License:
Copying and distribution of this file, with or without
modification, are permitted in any medium without royalty

1 The /usr/local/lib/systemd/system directory is the proper location for this file
based on the Linux Filesystem Hierarchical Standard (LFHS) and systemd best
practice.

Chapter 8 Using systemd Timers

203

provided the copyright notice and this notice are
preserved.
This file is offered as-is, without any warranty.
#

[Unit]
Description=Logs system statistics to the systemd journal
Wants=myMonitor.timer

[Service]
Type=oneshot
ExecStart=/usr/bin/free

[Install]
WantedBy=multi-user.target

Now let’s look at the status and test our service unit to ensure that it works as

we expect it to.

systemctl status myMonitor.service
◦ myMonitor.service - Logs system statistics to the
systemd journal
 Loaded: �loaded (/usr/local/lib/systemd/system/myMonitor.

service; disabled; preset: disabled)
 Drop-In: /usr/lib/systemd/system/service.d
 └─10-timeout-abort.conf, 50-keep-warm.conf
 Active: inactive (dead)

Now test the new service by starting it. Note that the service will run only

once when we start it or it’s triggered by a timer, and it won’t run on a reboot

because we haven’t enabled it.

systemctl start myMonitor.service

But where’s the output?

Chapter 8 Using systemd Timers

204

By default, the standard output (STDOUT) from programs run by systemd

service units is sent to the systemd journal, which leaves a record you can

view now or later—up to a point. Look at the journal specifically for your

service unit and for today only. The -S option, which is the short version of

--since, allows you to specify the time period that the journalctl tool

should search for entries. This isn’t because you don’t care about previous

results—in this case, there won’t be any—it is to shorten the search time

if your host has been running for a long time and has accumulated a large

number of entries in the journal. The -u option allows us to specify the

systemd unit that we want to see, excluding all the rest which we don’t

care about.

journalctl -S today -u myMonitor.service

A task triggered by a service can be a single program, a series of programs,

or a script written in any scripting language. Add another task to the service

by adding the following line to the end of the [Service] section of the

myMonitor.service unit file:

ExecStart=/usr/bin/lsblk

Start the service again and check the journal for the results, which should look

like this. You should see the results from both commands in the journal.

journalctl -S today -u myMonitor.service
Dec 05 10:47:40 testvm1.both.org systemd[1]: Starting
myMonitor.service - Log>
Dec 05 10:47:40 testvm1.both.org
free[266776]: total us>
Dec 05 10:47:40 testvm1.both.org free[266776]:
Mem: 8122904 6467>
Dec 05 10:47:40 testvm1.both.org free[266776]:
Swap: 8122364 >

Chapter 8 Using systemd Timers

205

Dec 05 10:47:40 testvm1.both.org systemd[1]: myMonitor.
service: Deactivated s>
Dec 05 10:47:40 testvm1.both.org systemd[1]: Finished
myMonitor.service - Log>
Dec 05 10:49:12 testvm1.both.org systemd[1]: Starting
myMonitor.service - Log>
Dec 05 10:49:12 testvm1.both.org
free[266786]: total us>
Dec 05 10:49:12 testvm1.both.org free[266786]:
Mem: 8122904 6461>
Dec 05 10:49:12 testvm1.both.org free[266786]:
Swap: 8122364 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
NAME MAJ:MIN RM S>
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
sda 8:0 0 1>
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
├─sda1 8:1 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
├─sda2 8:2 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
└─sda3 8:3 0 1>
Dec 05 10:49:13 testvm1.both.org lsblk[266788]: ├─vg01-
root 253:0 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]: ├─vg01-
usr 253:1 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]: ├─vg01-
var 253:2 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]: ├─vg01-
home 253:3 0 >

Chapter 8 Using systemd Timers

206

Dec 05 10:49:13 testvm1.both.org lsblk[266788]: ├─vg01-
tmp 253:4 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]: └─vg01-
TestFS 253:5 0 >
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
sr0 11:0 1 10>
Dec 05 10:49:13 testvm1.both.org lsblk[266788]:
zram0 252:0 0 7>
Dec 05 10:49:13 testvm1.both.org systemd[1]: myMonitor.
service: Deactivated s>
Dec 05 10:49:13 testvm1.both.org systemd[1]: Finished
myMonitor.service - Log

Now that you know your service works as expected, create the timer unit file,

myMonitor.timer, in /etc/systemd/system, and add the following:

This timer unit is for testing
Copyright David Both, 2025

GNU All-Permissive License:
Copying and distribution of this file, with or without
modification, are permitted in any medium without royalty
provided the copyright notice and this notice are
preserved.
This file is offered as-is, without any warranty.
#

[Unit]
Description=Logs some system statistics to the
systemd journal
Requires=myMonitor.service

[Timer]
Unit=myMonitor.service
OnCalendar=*-*-* *:*:00

Chapter 8 Using systemd Timers

207

[Install]
WantedBy=timers.target

The OnCalendar time expression, *-*-* *:*:00, should trigger the

timer to execute the myMonitor.service unit every minute. We’ll explore

OnCalendar settings a bit later in this chapter even though we looked at

them in the previous chapter.

For now, observe any journal entries pertaining to running your service when

it is triggered by the timer. You could also follow the timer, but following the

service allows you to see the results in near real time. Run journalctl with

the -f (follow) option:

journalctl -S today -f -u myMonitor.service

In another terminal session, start but do not enable the timer, and see what

happens after it runs for a while.

systemctl start myMonitor.service

One result shows up right away, and the next ones come at—sort of—one-

minute intervals. Watch the journal for a few minutes and see if you notice the

same things I did.

Be sure to check the status of both the timer and the service.

�Timer Accuracy
You probably noticed at least two things in the journal results for

Experiment 8-2. First, you don’t need to do anything special to cause the

STDOUT from the ExecStart triggers in the myMonitor.service unit to be

stored in the journal. That is all part of using systemd for running services.

However, it does mean that you might need to be careful about running

scripts from a service unit and how much STDOUT they generate.

Chapter 8 Using systemd Timers

208

The second thing is that the timer does not trigger exactly on the

minute at :00 seconds or even exactly one minute from the previous

instance. This is intentional, but it can be overridden if necessary (or if it

just offends your SysAdmin sensibilities).

The reason for this behavior is to prevent multiple services from

triggering at exactly the same time. For example, you can use time

expressions such as Weekly, Daily, and more. These shortcuts are all

defined to trigger at 00:00:00 hours on the day they are triggered. When

multiple timers are specified this way, there is a strong likelihood that they

would attempt to start simultaneously.

systemd timers are intentionally designed to trigger somewhat

randomly around the specified time to try to prevent simultaneous

triggers. They trigger semi-randomly within a time window that starts at

the specified trigger time and ends at the specified time plus one minute.

This trigger time is maintained at a stable position with respect to all other

defined timer units, according to the systemd.timer man page. In my

journal entries, the timer triggered immediately when it started and then

about 46 or 47 seconds after each minute.

Most of the time, such probabilistic trigger times are fine. When

scheduling tasks such as backups to run, so long as they run during off-

hours, there will be no problems. A SysAdmin can select a deterministic

start time, such as 01:05:00 in a typical cron job expression, to not

conflict with other tasks, but there is a large range of time values that will

accomplish that. A one-minute bit of randomness in a start time is usually

irrelevant.

However, for some tasks, exact trigger times are an absolute

requirement. For those, you can specify greater trigger time-span accuracy

(to within a microsecond) by adding a statement like this to the Timer

section of the timer unit file:

AccuracySec=1us

Chapter 8 Using systemd Timers

209

Time spans can be used to specify the desired accuracy as well as

to define time spans for repeating or one-time events. It recognizes the

following units:

•	 usec, us, μs

•	 msec, ms

•	 seconds, second, sec, s

•	 minutes, minute, min, m

•	 hours, hour, hr, h

•	 days, day, d

•	 weeks, week, w

•	 months, month, M (defined as 30.44 days)

•	 years, year, y (defined as 365.25 days)

All the default timers in /usr/lib/systemd/system specify a much

larger range for accuracy because exact times are not critical.

EXPERIMENT 8-3: TIMER ACCURACY

Look at some of the expressions in the system-created timers. Perform this

experiment as root.

grep Accur /usr/lib/systemd/system/*timer
/usr/lib/systemd/system/fstrim.timer:AccuracySec=1h
/usr/lib/systemd/system/logrotate.timer:AccuracySec=1h
/usr/lib/systemd/system/logwatch.timer:AccuracySec=12h
/usr/lib/systemd/system/mlocate-updatedb.
timer:AccuracySec=24h
/usr/lib/systemd/system/raid-check.timer:AccuracySec=24h
/usr/lib/systemd/system/unbound-anchor.timer:AccuracySec=24h

Chapter 8 Using systemd Timers

210

You can see that accuracy for these timers ranges from an hour to as much as

24 hours.

View the complete contents of some of the timer unit files in the /usr/lib/
systemd/system directory to see how they are constructed.

You do not have to enable the timer in this experiment to activate it at boot

time, but the command to do so would be

systemctl enable myMonitor.timer

The unit files you created do not need to be executable. You also did not

enable the service unit because it is triggered by the timer. You can still trigger

the service unit manually from the command line, should you want to. Try that

and observe the journal.

See the man pages for systemd.timer and systemd.time for

more information about timer accuracy, event-time expressions, and

trigger events.

�Timer Types
systemd timers have other capabilities that are not found in cron, which

triggers only on specific, repetitive, real-time dates and times. systemd

timers can be configured to trigger based on status changes in other

systemd units. For example, a timer might be configured to trigger a

specific elapsed time after system boot, after startup, or after a defined

service unit activates. These are called monotonic timers. Monotonic

refers to a count or sequence that continually increases. These timers are

not persistent because they reset after each boot.

Table 8-1 lists the monotonic timers along with a short definition of

each, as well as the OnCalendar timer, which is not monotonic and is used

to specify future times that may or may not be repetitive. This information

is derived from the systemd.timer man page with a few minor changes.

Chapter 8 Using systemd Timers

211

Table 8-1.  systemd timer definitions

Timer Monotonic Definition

OnActiveSec= X This defines a timer relative to the moment

the timer is activated.

OnBootSec= X This defines a timer relative to when the

machine boots up.

OnStartupSec= X This defines a timer relative to when the

service manager first starts. For system timer

units, this is very similar to OnBootSec=,

as the system service manager generally

starts very early at boot. It’s primarily useful

when configured in units running in the per-

user service manager, as the user service

manager generally starts on first login only,

not during boot.

OnUnitActiveSec= X This defines a timer relative to when

the timer that is to be activated was last

activated.

OnUnitInactiveSec= X This defines a timer relative to when

the timer that is to be activated was last

deactivated.

OnCalendar= This defines real-time (i.e., wall clock)

timers with calendar event expressions. See

systemd.time(7) for more information

on the syntax of calendar event expressions.

Otherwise, the semantics are similar to

OnActiveSec= and related settings. This

timer is the one most like those used with the

cron service.

Chapter 8 Using systemd Timers

212

The monotonic timers can use the same shortcut names for their

time spans as the AccuracySec statement mentioned before, but systemd

normalizes those names to seconds. For example, you might want to

specify a timer that triggers an event one time, five days after the system

boots; that might look like OnBootSec=5d. If the host booted at 2020-06-15
09:45:27, the timer would trigger at 2020-06-20 09:45:27 or within one

minute after.

�OnCalendar Event Expressions
OnCalendar event expressions are a key part of triggering timers at desired

repetitive times. We did cover this in Chapter 7, but let’s review it here,

because it’s key to understanding and creating OnCalendar expressions for

timers that will trigger events at the times we need them.

systemd timers use a different style for time and date expressions than

the format used in crontab. It is more flexible than crontab and allows

fuzzy dates and times in the manner of the at command. It should also be

familiar enough that it will be easy to understand.

The basic format for systemd timers using OnCalendar= is DOW YYYY-
MM-DD HH:MM:SS. DOW (day of week) is optional, and other fields can

use an asterisk (*) to match any value for that position. All calendar time

forms are converted to a normalized form. If the time is not specified, it

is assumed to be 00:00:00. If the date is not specified but the time is, the

next match might be today or tomorrow, depending upon the current

time. Names or numbers can be used for the month and day of the week.

Comma-separated lists of each unit can be specified. Unit ranges can be

specified with two dots “..” between the beginning and ending values.

There are a couple interesting options for specifying dates. The tilde (~)

can be used to specify the last day of the month or a specified number of

days prior to the last day of the month. The “/” can be used to specify a day

of the week as a modifier.

Chapter 8 Using systemd Timers

https://doi.org/10.1007/979-8-8688-1328-3_7

213

Table 8-2 shows some examples of some typical time expressions used

in OnCalendar statements.

Table 8-2.  Sample OnCalendar event expressions

Calendar Event Expression Description

DOW YYYY-MM-DD HH:MM:SS

--* 00:15:30 Every day of every month of every year at 15

minutes and 30 seconds after midnight.

Weekly Every Monday at 00:00:00.

Mon *-*-* 00:00:00 Same as weekly.

Mon Same as weekly.

Wed 2020-*-* Every Wednesday in 2020 at 00:00:00.

Mon..Fri 2021-*-* Every weekday in 2021 at 00:00:00.

2022-6,7,8-1,15 01:15:00 The 1st and 15th of June, July, and August of

2022 at 01:15:00AM.

Mon *-05~03 The next occurrence of a Monday in May of any

year which is also the third day from the end of

the month.

Mon..Fri *-08~04 The fourth day preceding the end of August for any

years in which it also falls on a weekday.

*-05~03/2 The third day from the end of the month of May

and then again two days later. Repeats every year.

Note that this expression uses the tilde (~).

*-05-03/2 The third day of the month of May and then every

second day for the rest of May. Repeats every

year. Note that this expression uses the dash (-).

Chapter 8 Using systemd Timers

214

�Superfluous Timers
Most of the default timers are useful and necessary, but some may be

superfluous. These unnecessary timers can be deactivated in accordance

with the Linux philosophy of keeping things simple. Deactivating those

timers saves system resources.

EXPERIMENT 8-4: DELETING SUPERFLUOUS TIMERS

When you looked at the list of active timers in Experiment 8-1, you probably

saw the same list I did. I’ve reproduced it here and removed some of the

columns so it could be larger and more readable. If you take a minute to

consider that list, you’ll see some timers that can be deleted if your system

doesn’t have certain hardware.

fstrim.timer �Discard unused filesystem
blocks once a week

logrotate.timer Daily rotation of log files
plocate-updatedb.timer �Update the plocate

database daily
raid-check.timer Weekly RAID setup health check
sysstat-collect.timer �Run system activity accounting

tool every 10 minutes
sysstat-rotate.timer �Rotate daily system activity

data file at midnight
sysstat-summary.timer �Generate summary of yesterday's

process accounting
systemd-tmpfiles-clean.timer �Daily Cleanup of Temporary

Directories
unbound-anchor.timer �daily update of the root trust

anchor for DNSSEC

Chapter 8 Using systemd Timers

215

The first one that we see here is the fstrim.timer. The fstrim utility must be run

at least weekly to ensure that data blocks on SSD devices are properly freed

up and returned to the available pool of storage blocks. If this isn’t done, those

blocks would never be returned to the pool of free blocks.

If you don’t have any SSD devices on your system, this timer can be disabled.

Do this on your VM since it doesn’t really deal with the hardware directly,

and, whether you have SSD hardware or not, this won’t affect the physical

hardware in any way.

systemctl disable --now fstrim.timer

Removed '/etc/systemd/system/timers.target.wants/
fstrim.timer'.

We don’t want to touch the logrotate.timer, which prevents the logfiles from

becoming excessively large.

Nor do we want to disable the plocate-updatedb.timer because it causes the

plocate database to be updated. The plocate database is used by the locate

command which allows you to do a very fast search for files on a Linux host.

If you don’t have a RAID array, the raid-check.timer can also be disabled. This

health check is only needed if a RAID array is present on the system.

Verify for yourself whether any of the other timers are needed or not.

�Summary
systemd timers can be used to perform the same kinds of tasks as the cron

tool but offer more flexibility in terms of the calendar and monotonic time

expressions for triggering events.

Chapter 8 Using systemd Timers

216

Even though the service units you created for this experiment are

intended to be triggered by the timer, you can also use the systemctl
start <ServiceName>.service command to trigger them at any time.

Multiple maintenance tasks can be scripted in a single timer; these can be

Bash scripts or Linux utility programs. You can run the service triggered by

the timer to run all the scripts, or you can run individual scripts as needed.

I have not yet seen any indication that cron and at will be deprecated.

I hope that does not happen because at, at least, is much easier to use for

one-off task scheduling than systemd timers.

�Exercises
Perform these exercises to complete this chapter:

	 1.	 Create a shell script that simulates a backup

program. All it needs is to print to STDOUT that it’s

starting, wait for five to ten seconds, then print to

STDOUT that the backup is completed.

	 2.	 Create a service that runs the backup script. Using

the journal, verify that it runs as expected.

	 3.	 Create a timer that runs the backup script once

every five minutes. Enable the timer and follow

the journal entries to verify that the timer works as

expected.

	 4.	 What type of timer did you use in Exercise 3? Why?

	 5.	 Create an OnCalendar expression that would

trigger the backup timer every Sunday morning at

01:30AM.

Chapter 8 Using systemd Timers

217

	 6.	 Create an OnCalendar expression that would trigger

an event the fourth Tuesday of every month.

	 7.	 Can you create an event expression that will trigger

the last Friday of every month?

Chapter 8 Using systemd Timers

219© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_9

CHAPTER 9

Using systemd
Journals

�Objectives
In this chapter, you will learn

•	 What the systemd journal is and why it’s superior to the

old log files

•	 How to use dmesg to view log entries covering the

journal’s boot gap

•	 How to use systemd journals for exploring and

problem-solving

•	 How to configure the systemd journal service

•	 How to add journal entries from scripts and the

command line

�Overview
Problem determination of computer system failures can be as much an art

as it can a science. Sometimes it seems even a little magic can be useful.

We’ve all encountered situations where a reported failure could not be

https://doi.org/10.1007/979-8-8688-1328-3_9#DOI

220

reproduced, and that is always frustrating for the user as well as the system

administrator. Even home appliances and automobiles can be obstinate

and refuse to fail when the service person shows up.

Anthropomorphism aside, SysAdmins have some tools that can show

us what has been happening in our Linux computers with varying degrees

of granularity. We have tools like top, htop, btop, glances, sar, iotop,

tcpdump, traceroute, mtr, iptraf-ng, df, du, and many more, all of which

can display the current state of a host and several of which can produce

logs of various levels of detail.

While these tools can be used to locate ongoing problems, they are

not particularly helpful for transient problems and those that have no

symptoms that are directly observable by the user—at least until some

major and possibly catastrophic problem occurs.

One important tool I have used for problem determination is the

system logs—and now with systemd—the systemd journals. Logs and

journals are persistent files that are used by the system to store and

maintain a complete record of system events. This can provide critical

information about a system and what was taking place when an error

occurred—even long after the fact.

Many historical style log files are still maintained along with the

systemd journals. All log and journal files are stored in the /var/log

directory.

The systemd journal is always one of my first tools when solving a

problem, especially those that don’t seem to happen when I am watching.

It took me a long time at the beginning of my SysAdmin career to realize

the wealth of information in the log files, and it improved the speed at

which I could resolve problems once I finally did.

You have already seen some uses of the journalctl command in

previous chapters. Let’s explore some of the details of the systemd journal

and how it works as well as some additional ways for SysAdmins to use

journalctl to use the resulting journals to locate and identify problems.

Chapter 9 Using systemd Journals

221

�The Journal
The objective of any log or journal is to maintain a time-sequenced history

of the normal activities of the various services and programs that run on a

host and to record any errors and warning messages that might occur. The

log messages used to be maintained in separate files in /var/log, usually

one for the kernel and separate ones for most of the services running on

the host. Unfortunately, the large number of log files could delay discovery

of the root cause of the problem by spreading out needed information.

This could be especially time-consuming while trying to determine what

was taking place in the system when the error occurred.

The old /var/log/dmesg file was usually for the kernel, but that file was

discontinued several years ago in favor of using the dmesg command to

display the same information—although only that from the current boot—

and integrating those messages and more into the /var/log/messages

file. This merger of other logs into the messages file did help to speed up

problem determination by keeping much of the data in one file, but there

were still many services that had not integrated their logs into the more

central messages file.

The systemd journal is designed to collect all messages into a single,

unified database that can show a complete picture of everything that

happened in a system at and around a specific time or event.

Journaling becomes active very early in the Linux boot process, while

systemd itself is initializing. The exact amount of time will depend upon

the speed of the host. For my fastest system, this was 1.38 seconds, and my

slowest was 6.31 seconds.

Because all of the events, regardless of the source, are in one place in

time sequence order, it is possible to see at a glance everything that was

happening at a specific point or range of times. This is one of the main

benefits of systemd journaling when problem-solving.

The dmesg command can also be used to discover the first moments

of the kernel startup sequence. The kernel ring buffer is a space in memory

Chapter 9 Using systemd Journals

222

that is used to store kernel messages. This data is not persistent, so dmesg

can’t reveal kernel logs from previous boots. Nor does it contain anything

other than kernel messages.

The systemd journal also contains the kernel messages in addition to

everything else it records.

Let’s explore those first few moments in system initialization.

EXPERIMENT 9-1: EXPLORING SYSTEM INITIALIZATION

Let’s start by looking at the earliest portion of the journal during a Linux boot.

We’ll use monotonic times, so we can see the time since the kernel started its

initialization sequence. Enter the following command as a non-root user:

$ journalctl -b -o short-monotonic
[4.023826] testvm1.both.org kernel: Linux version
6.11.8-300.fc41.x86_64 (mockbuild@6a5de21fe85b4b2584
ad846216415107) (gcc (G>
[4.023878] testvm1.both.org kernel: Command line:
BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.11.8-300.fc41.x86_64
root=/dev/mapper/vg01->
[4.023909] testvm1.both.org kernel: BIOS-provided
physical RAM map:
[4.023931] testvm1.both.org kernel: BIOS-e820: [mem
0x0000000000000000-0x000000000009fbff] usable
[4.023951] testvm1.both.org kernel: BIOS-e820: [mem
0x000000000009fc00-0x000000000009ffff] reserved
[4.023973] testvm1.both.org kernel: BIOS-e820: [mem
0x00000000000f0000-0x00000000000fffff] reserved
[4.024000] testvm1.both.org kernel: BIOS-e820: [mem
0x0000000000100000-0x00000000dffeffff] usable
[4.024021] testvm1.both.org kernel: BIOS-e820: [mem
0x00000000dfff0000-0x00000000dfffffff] ACPI data

Chapter 9 Using systemd Journals

223

[4.024042] testvm1.both.org kernel: BIOS-e820: [mem
0x00000000fec00000-0x00000000fec00fff] reserved
[4.024062] testvm1.both.org kernel: BIOS-e820: [mem
0x00000000fee00000-0x00000000fee00fff] reserved

On my VM, the first entry is at a little over four seconds into the boot. Non-root

users can’t use the dmesg command, so we’ll do that as root.

dmesg | less
[0.000000] Linux version 6.11.8-300.fc41.x86_64 (mock
build@6a5de21fe85b4b2584ad846216415107) (gcc (GCC) 14.2.1
20240912 (Red Hat 14.2.1-3), GNU ld version 2.43.1-2.fc41)
#1 SMP PREEMPT_DYNAMIC Thu Nov 14 20:37:39 UTC 2024
[0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/
vmlinuz-6.11.8-300.fc41.x86_64 root=/dev/mapper/vg01-root
ro rd.lvm.lv=vg01/root rd.lvm.lv=vg01/usr selinux=0
[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0
x000000000009fbff] usable
[0.000000] BIOS-e820: [mem 0x000000000009fc00-<SNIP>
[0.000000] NX (Execute Disable) protection: active
[0.000000] APIC: Static calls initialized
[0.000000] SMBIOS 2.5 present.
[0.000000] DMI: innotek GmbH VirtualBox/VirtualBox,
BIOS VirtualBox 12/01/2006
[0.000000] DMI: Memory slots populated: 0/0
[0.000000] Hypervisor detected: KVMThe kernel ring
buffer is a space in memory that is used to store kernel
messages. This data is not persistent so can’t reveal
kernel logs from previous boots. In the past, and until
recently, the data for previous boots was stored with that
from the current boot in the file /var/log/dmesg.

Chapter 9 Using systemd Journals

224

[0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
[0.000003] kvm-clock: using sched offset of
5815639627 cycles
<SNIP>

I expect you’ve noticed the anomaly here. We’ll explore that a little later in this

chapter.

As a SysAdmin, the only time I typically use dmesg is to discover the

device filename of newly inserted USB storage devices. That’s only when

I’m working on an chapter or a book and need to be absolutely sure I’m

using the correct device and won’t delete everything in my root directory.

I rely far more on the systemd journal when doing system maintenance

and problem determination.

�The systemd Journal Service
The systemd journaling service is implemented by the systemd-journald

daemon. According to the man page:

systemd-journald is a system service that collects and stores
logging data. It creates and maintains structured, indexed
journals based on logging information that is received from a
variety of sources:

•	 Kernel log messages

•	 Simple system log messages

•	 Structured system log messages

•	 Standard output and standard error of service units.

•	 Audit records, originating from the kernel audit

subsystem

Chapter 9 Using systemd Journals

225

The daemon will implicitly collect numerous metadata fields
for each log messages in a secure manner that can’t be faked.
See systemd.journal-fields(7) for more information about the
collected metadata.

Log data collected by the journal is primarily text-based but
can also include binary data where necessary. Individual
fields making up a log record stored in the journal may be up
to 264-1 bytes in size.

The capability to add entries to the journal in a manner that’s both

secure and can’t be faked is important. One of the ways that some rootkits

hide their presence is to enter fake entries into the logs.

�Configuration
The systemd journal daemon can be configured using the journald.conf

file located in the /etc/systemd/ directory. For many hosts, this file needs

no changes because the defaults are quite reasonable. You should look at

the journald.conf file now if you have not already.

The most common configuration changes you might encounter

are those that specify the maximum journal file size, number of older

journal files, and the maximum file retention times. The primary reason

for making those changes would be to reduce the storage space used

by the journal if you have a small storage device. In a mission-critical

environment, you may also want to reduce the amount of time between

syncing journal data stored in RAM memory to the storage device.

The journald.conf man page has more details.

Chapter 9 Using systemd Journals

226

�About that Binary Data Format…
One of the controversies surrounding systemd is the binary format in

which the journal contents are stored. Some arguments against systemd

are based on the systemd journal being stored in a binary format. This

would seem to be contrary to the Unix/Linux philosophy to use ASCII text

for data. Those who dislike systemd use arguments like the following to

support their viewpoints.

Doug McIlroy, the inventor of pipes, says this:

This is the Unix Philosophy: Write programs that do one thing
well. Write programs to work together. Write programs to
handle text steams, because that is a universal interface.

—Doug McIlroy, in Eric S. Raymond’s The Art of Unix
Programming

However, these arguments seem to be based on at least a partial

misconception because the man page clearly states that the data “is

primarily text-based” although it does allow for binary data forms. So are

the journal files binary or not? Let’s explore that question.

EXPERIMENT 9-2: ARE THE JOURNAL FILES IN BINARY?

The systemd journal files are stored in one or more subdirectories of /var/

log/journal. Log in to a test system or VM for which you have root access and

make /var/log/journal the PWD. List the subdirectories here, choose one, and

make it the PWD. I looked at these files in a number of ways. I started with the

stat command. The journal filenames on your host will be different from the

ones on mine.

Chapter 9 Using systemd Journals

227

stat system@0f3b8b<snip>a128e.journal
File: system@0f3b8b<snip>a128e.journal
Size: 16777216 Blocks: 30448 IO Block:
4096 regular file
Device: 253,2 Inode: 1573036 Links: 1
Access: (0640/-rw-r-----) Uid: (0/ root) Gid: (190/
systemd-journal)
Access: 2025-01-02 15:45:17.742103482 -0500
Modify: 2024-11-19 12:54:53.673100769 -0500
Change: 2024-11-19 12:54:53.673100769 -0500
Birth: 2024-11-19 12:28:55.266965814 -0500

The journal file is identified as a “regular” file which is not especially helpful.

The file command identifies it as a “journal” file, but we already know that.

But let’s look a little inside the file with the dd command. The command below

sends the output data stream to STDOUT; you may want to pipe it through the

less pager:

dd if=system@0f3b8bac<snip>a128e.journal | less
<SNIP>
@^@^@^@^@^@^@^@_SOURCE_MONOTONIC_TIMESTAMP=41028^@^@^@^@^@
^@^@^A^@^@^@^@^@^@^@n^@^@^@^@^@^@^@
X.^],<83>B^Y^@^@^@^@^@^@^@^@<B8>a9^@^@^@^@^@<88>c9^@^@
^@^@^@^@^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^@^@^@^@^@^@^@
^@MESSAGE=ACPI: PM-Timer IO Port: 0x4008^@^@^C^@^@^@
^@^@^@^@h^@^@^@^@^@^@^@<DD>$^B^@^@^@^@^@^U^V<CA>,C'
^F^@Y<A1>H^@^@^@^@^@_<83><88>[5@M <87>Ti^S<E4><B4>
4lJ1<A5><D9>|Oy:0<FA>8^@P<FB>8^@<E8><FB>8^@<E0><FD>
8^@<88><FE>8^@8<FF>8^@<D8><FF>8^@^@^A9^@<A8>b9^@^Xc9^@
^A^@^@^@^@^@^@^@i^@^@^@^@^@^@^@<AD><@^@^@^@^@^@^@^@^@^@
^A^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@_SOURCE_MONOTONIC_TIMEST
AMP=41100^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@<8E>^@^@^@^@^@^@^
@<95>~l<DD><E5><C3>u>p^S<AC>^@^@^@^@^@^Xc9^@^@^@^@^@<F0>

Chapter 9 Using systemd Journals

228

d9^@^@^@^@^@^@^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^@^@^@^@^@
^@^@^@MESSAGE=IOAPIC[0]: apic_id 6, version 32, address
0xfec00000, GSI 0-23^@^@^C^@^@^@^@^@^@^@h^@^@^@^@^@^@^@<
DE>$^B^@^@^@^@^@$^V<CA>,C'^F^@g<A1>H^@^@^@^@^@_<83><88>
[5@M<87>Ti^S<E4><B4>4l<B9><B3>3<83>@^@^@^@^@
^A^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@_SOURCE_MONOTONIC_TIMEST
AMP=41104^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@<88>^@^@^@^@^@^@^
@^]<D2>I<A7><F6>J9^V^@^@^@^@^@^@^@^@`d9^@^@^@^@^@Pf9^@^
@^@^@^@^@^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@
MESSAGE=ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2
dfl dfl)^C^@^@^@^@^@^@^@h^@^@^@^@^@^@^@
<SNIP>

The data stream from the dd command, of which I only reproduced a

minuscule amount, shows an interesting mixture of ASCII text and binary data.

Another useful tool is the strings command which simply displays all of the

ASCII text strings contained in a file and ignores the binary data.

strings system@34a336<snip>1afdc92.journal | less

This data can be interpreted by humans, and this particular segment looks

very similar to the output data stream from the dmesg command.

I leave you on your own for further exploration, but my conclusion

is that the journal files are clearly a mix of binary and ASCII text. That

mixture makes it cumbersome at best to use the traditional text-based

Linux tools to extract usable data. The systemd journalctl command

provides us a better method with many possibilities for extracting and

viewing journal data.

Chapter 9 Using systemd Journals

229

�The journalctl Command
The systemd journaling system collects and stores huge amounts of data,

and the oldest could be weeks or months ago. This amounted to about

three months’ worth of data for my primary workstation.

The journalctl command is designed to extract usable information

from the systemd journals using powerful and flexible criteria for

identifying the desired data. This is the tool we use to explore the content

of system journals.

Let’s explore this powerful command in more detail.

EXPERIMENT 9-3: USING JOURNALCTL

You can use the journalctl command without any options or arguments to view

the entire systemd journal which contains all journal and log information. As

we proceed through this experiment, I’ll show you various ways to select only

the data in which you are interested.

journalctl

I’m not even going to try to reproduce the data stream here because there is

so much. Scroll through this data using the pager’s movement keys.

You can also explicitly show the same data as the dmesg command. Open

two terminal sessions, place them next to each other, and issue the dmesg

command in one and the following command in the other:

journalctl --dmesg

The only difference you should find is the time format. The dmesg command

is in a monotonic format that shows the number of seconds since the system

boot. The journalctl output is in a date and time format. The short-monotonic

option displays the time since boot, starting with the first boot.

journalctl --dmesg -o short-monotonic

Chapter 9 Using systemd Journals

230

The journalctl command has many options including the -o (output) option

with several sub-options that allow you to select from several time and date

formats that meet different sets of requirements. Table 9-1 lists most of these,

along with a short description of each that I have expanded upon or modified

a bit from the journalctl man page. Note that the primary difference between

most of these is the format of the date and time, while the other information

remains the same.

(continued)

Table 9-1.  journalctl time and date formats

Format
Name

Description

short This is the default format and generates an output that most closely

resembles the formatting of classic syslog files, showing one line per

journal entry. This option shows journal metadata including the date

and time, the fully qualified hostname, and the unit name, such as the

kernel, DHCP, etc.

Jul 20 08:43:01 testvm1.both.org kernel: Inode-cache
hash table entries: 1048576 (order: 11, 8388608
bytes, linear)

short-full This format is very similar to the default, but shows timestamps

in the format that the --since= and --until= options accept. Unlike

the timestamp information shown in short output mode, this mode

includes weekday, year, and time zone information in the output and is

locale independent.

Mon 2020-06-08 07:47:20 EDT testvm1.both.org kernel:
x86/fpu: Supporting XSAVE feature 0x004: 'AVX
registers'

Chapter 9 Using systemd Journals

231

(continued)

Format
Name

Description

short-iso The short-iso format is very similar to the default, but shows ISO 8601

wallclock timestamps.

2020-06-08T07:47:20-0400 testvm1.both.org kernel:
kvm-clock: Using msrs 4b564d01 and 4b564d00

short-iso-

precise

This format is the same as short-iso above, but includes full

microsecond precision.

2020-06-08T07:47:20.223738-0400 testvm1.both.org
kernel: Booting paravirtualized kernel on KVM

short-

monotonic

Very similar to the default, short-full, but shows monotonic timestamps

instead of wallclock timestamps. I find this most useful for

[2.091107] testvm1.both.org kernel: ata1.00:
ATA-6: VBOX HARDDISK, 1.0, max UDMA/133

short-

precise

This format is also similar to the default, but shows classic syslog

timestamps with full microsecond precision.

Jun 08 07:47:20.223052 testvm1.both.org
kernel: BIOS-e820: [mem 0x000000000009fc00-
0x000000000009ffff] reserved

short-unix Like the default but shows seconds passed since January 1, 1970,

UTC, instead of wallclock timestamps ("UNIX time"). The time is shown

with microsecond accuracy.

1591616840.232165 testvm1.both.org kernel: tcp_
listen_portaddr_hash hash table entries: 8192

Table 9-1.  (continued)

Chapter 9 Using systemd Journals

232

Format
Name

Description

cat Generates a very terse output, only showing the actual message of

each journal entry with no metadata, not even a timestamp.

ohci-pci 0000:00:06.0: irq 22, io mem 0xf0804000

verbose This format shows the full data structure for all of the entry items with

all fields. This is the format option that is most different from all of the

others.

Mon 2020-06-08 07:47:20.222969 EDT [s=d52ddc9f3e8f43
4b9b9411be2ea50b1e;i=1;b=dcb6dcc0658e4a8d8c781c21a2c
6360d;m=242d7f;t=5a7912c6148f9;x=8f>

_SOURCE_MONOTONIC_TIMESTAMP=0

_TRANSPORT=kernel

PRIORITY=5

SYSLOG_FACILITY=0

SYSLOG_IDENTIFIER=kernel

MESSAGE=Linux version 5.6.6-300.fc32.x86_64
(mockbuild@bkernel03.phx2.fedoraproject.org)
(gcc version 10.0.1 20200328 (Red Hat 10.0.1-0>

_BOOT_ID=dcb6dcc0658e4a8d8c781c21a2c6360d

_MACHINE_ID=3bccd1140fca488187f8a1439c832f07

_HOSTNAME=testvm1.both.org

Table 9-1.  (continued)

Chapter 9 Using systemd Journals

233

There are other choices available with the -o option that provide for exporting

the data in various formats such as binary or JSON. I also find the -x option

illuminating because it can show additional explanatory messages for some

journal entries. If you try this option, be aware that it can greatly increase

the volume of the output data stream. For one useful example, the additional

information for an entry like the following:

journalctl -x -S today -o short-monotonic
[121206.308026] studentvm1 systemd[1]: Starting unbound-
anchor.service - update of the root trust anchor for
DNSSEC validation in unbound...
░░ �Subject: A start job for unit unbound-anchor.service

has begun execution
░░ Defined-By: systemd
░░ �Support: https://lists.freedesktop.org/mailman/

listinfo/systemd-devel
░░
░░ �A start job for unit unbound-anchor.service has begun

execution.
░░
░░ The job identifier is 39813.
[121206.308374] studentvm1 rsyslogd[975]: [origin
software="rsyslogd" swVersion="8.2204.0-3.fc37"
x-pid="975" x-info="https://www.rsyslog.com"] rsyslogd w>
[121206.308919] studentvm1 systemd[1]: Starting logrotate.
service - Rotate log files...
░░ �Subject: A start job for unit logrotate.service has

begun execution
░░ Defined-By: systemd
░░ �Support: https://lists.freedesktop.org/mailman/

listinfo/systemd-devel
░░

Chapter 9 Using systemd Journals

234

░░ �A start job for unit logrotate.service has begun
execution.

░░
░░ The job identifier is 39491.
<SNIP>

There is some new information here, but I think the main benefit is that the

available information is contextualized to provide some clarification of the

original terse messages. The URL provided by the Support line for each entry

points to a mailing list that you can join for active support.

Narrowing the Search

Most of the time, it is not necessary or desirable to list all of the journal entries

and manually search through them. Sometimes I look for entries related to a

specific service and sometimes entries that took place at specific times. The

journalctl command provides powerful options that allow us to see only those

data in which we have an interest.

Tip  Be sure to use boot offsets and UIDs, as well as dates and
times for your situation as the ones shown here are for my time
and date.

Let’s start with the --list-boots option which lists all of the boots that took

place during the time period for which journal entries exist. Note that the

journalctl.conf file may specify that journal entries be discarded after they

reach a certain age or after the storage device (HDD/SSD) space taken by the

journals reaches a specified maximum amount.

Chapter 9 Using systemd Journals

235

journalctl --list-boots

IDX BOOT ID
 FIRST ENTRY LAST ENTRY

-79 93b506c4ef654d6c85da03a9e3436894
 Tue 2023-01-17 02:53:26 EST Wed 2023-01-18 07:55:16 EST
-78 85bacafb6f11433089b0036374865ad9
 Fri 2023-01-20 06:11:11 EST Fri 2023-01-20 11:15:44 EST
-77 39ac25ab4bfa43a8ae3de0c6fe8c1987
 Fri 2023-01-20 11:18:40 EST Fri 2023-01-20 11:21:13 EST
-76 61b9a620bfaa4e39ba1151ea87702360
 Fri 2023-01-20 11:25:15 EST Fri 2023-01-20 11:30:57 EST
<SNIP>
 -3 2624601ee2464c68abc633fe432876e5
 Tue 2023-04-25 09:20:47 EDT Tue 2023-04-25 10:27:57 EDT
 -2 74796c22509344849f4cacb57278151d
 Tue 2023-04-25 10:28:28 EDT Wed 2023-04-26 07:40:51 EDT
 -1 a60f595794bf4789b04bbe50371147a8
 Thu 2023-04-27 02:13:49 EDT Fri 2023-04-28 05:49:54 EDT
 0 920a397a6fc742899bb4e0576cfe7a70
 Fri 2023-04-28 10:20:14 EDT Fri 2023-04-28 20:50:16 EDT

The most recent boot ID appears at the bottom and is the long, random Hex

number. Now we can use this data to view the journals for a specific boot. This

can be specified using the boot offset number in the left-most column or the

UUID in the second column. This command displays the journal for the boot

instance with the offset of -2—the second previous boot from the current one.

journalctl -b -2
Apr 25 10:28:28 studentvm1 kernel: Linux version
6.1.18-200.fc37.x86_64 (mockbuild@bkernel01.iad2.
fedoraproject.org) (gcc (GCC) 12.2.1 20221121 (Red Hat 1>

Chapter 9 Using systemd Journals

236

Apr 25 10:28:28 studentvm1 kernel: Command line: BOOT_
IMAGE=(hd0,gpt2)/vmlinuz-6.1.18-200.fc37.x86_64 root=/dev/
mapper/fedora_studentvm1-root ro rd.lvm.lv>
Apr 25 10:28:28 studentvm1 kernel: x86/fpu: Supporting
XSAVE feature 0x001: 'x87 floating point registers'
Apr 25 10:28:28 studentvm1 kernel: x86/fpu: Supporting
XSAVE feature 0x002: 'SSE registers'
<SNIP>

Or you could use the UUID for the desired boot. The offset numbers change

after each boot, but the UUID does not. In this example, I am using the UID for

the 76th previous boot. The UUIDs for the boots on your VM will be different,

but choose one and use it in the following command:

journalctl -b 61b9a620bfaa4e39ba1151ea87702360

The -u option allows selection of specific units to examine. You can use a unit

name or a pattern for matching and can use this option multiple times

to match multiple units or patterns. In this example, I used it in combination

with -b to show chronyd journal entries for the current boot.

journalctl -u chronyd -b
Apr 28 10:20:41 studentvm1 systemd[1]: Starting chronyd.
service - NTP client/server...
Apr 28 10:20:43 studentvm1 chronyd[1045]: chronyd version
4.3 starting (+CMDMON +NTP +REFCLOCK +RTC +PRIVDROP
+SCFILTER +SIGND +ASYNCDNS +NTS +SECHASH +IP>
Apr 28 10:20:43 studentvm1 chronyd[1045]: Frequency
15369.953 +/- 0.034 ppm read from /var/lib/chrony/drift
Apr 28 10:20:43 studentvm1 chronyd[1045]: Using right/UTC
timezone to obtain leap second data
Apr 28 10:20:43 studentvm1 chronyd[1045]: Loaded seccomp
filter (level 2)

Chapter 9 Using systemd Journals

237

Apr 28 10:20:43 studentvm1 systemd[1]: Started chronyd.
service - NTP client/server.
Apr 28 14:20:58 studentvm1 chronyd[1045]: Forward time
jump detected!
Apr 28 14:21:16 studentvm1 chronyd[1045]: Selected source
192.168.0.52
Apr 28 14:21:16 studentvm1 chronyd[1045]: System clock TAI
offset set to 37 seconds
Apr 28 14:24:32 studentvm1 chronyd[1045]: Selected source
138.236.128.36 (2.fedora.pool.ntp.org)

Suppose we want to look at events that were recorded between two arbitrary

times. We can use -S (--since) and -U (--until) to specify the beginning and

ending times as well. The following command displays journal entries starting

at 15:36:00 on March 24, 2023, up through the current time:

journalctl -S "2023-03-24 15:36:00"

And this command displays all journal entries starting at 15:36:00 on March

24, 2023, and up until 16:00:00 on March 30.

journalctl -S "2023-03-24 15:36:00" -U "2023-03-30
16:00:00"

The next command combines -S, -U, and -u to give us the journal entries for

the NetworkManager service unit starting at 15:36:00 on July 24, 2020, and

up until 16:00:00 on July 20, 2029.

journalctl -S "2023-03-24 15:36:00" -U "2029-07-20
16:00:00" -u NetworkManager

If the full range of dates doesn’t exist, journalctl will display the range that

does exist.

Chapter 9 Using systemd Journals

238

Determine the range of dates contained in the journals for your system and

reduce the date range in the journalctl command to display only a portion of

those dates that actually exist.

Some syslog facilities such as cron, auth, mail, daemon, user, and more can

be viewed with the --facility option. You can use --facility=help to list the

available facilities. In this example, the mail facility is not the sendmail service

that would be used for an email service but the local client used by Linux to

send email to root as event notifications. Sendmail actually has two parts, the

server which, for Fedora and related distributions, is not installed by default

and the client which is always installed so that it can be used to deliver system

emails to local recipients, especially root.

journalctl --facility=help
Available facilities:
kern
user
mail
<SNIP>
journalctl --facility=kern

This data should look familiar.

�Commonly Used Options
Table 9-2 summarizes some of the options that I use most frequently.

Most of these options can be used in various combinations to further

narrow down the search. Be sure to refer to Chapter 7, “Analyzing systemd

Calendar and Time Spans,” for details on creating and testing timestamps

as well as important tips like using quotes around timestamps.

Chapter 9 Using systemd Journals

https://doi.org/10.1007/979-8-8688-1328-3_7

239

Table 9-2.  Some options used to narrow searches of the journal

Option Description

--list-boots Displays a list of boots. That information can be used to

specify that only journal entries for a selected boot be

shown.

-b [offset|boot ID] Used to specify which boot to display information for.

This includes all journal entries from that boot through

shutdown or reboot.

--facility=[facility
name]

Used to specify the facility names as known to syslog.

Use --facility=help to list the valid facility names.

-k, --dmesg Displays only kernel messages. This is equivalent to

using the dmesg command.

-S, --since
[timestamp]

Shows all journal entries since (after) the specified

time. Can be used with --until to display an arbitrary

range of time. Fuzzy times such as “yesterday” and “2

hours ago”—with quotes—are also allowed.

-u [unit name] The -u option allows selection of specific units to

examine. You can use a unit name or a pattern for

matching. This option can be used multiple times to

match multiple units or patterns.

-U, --until
[timestamp]

Shows all journal entries until (prior to) the specified

time. Can be used with --since to display an arbitrary

range of time. Fuzzy times such as “yesterday” and “2

hours ago”—with quotes—are also allowed.

The journalctl man page lists all of the options that can be used to

narrow searches to the specific data we need.

Chapter 9 Using systemd Journals

240

�Other Interesting Options
The journalctl program offers other interesting options, some of which

are listed in Table 9-3. These options are useful for refining the data

search, how the journal data is displayed, and managing the journal files

themselves.

Table 9-3.  Some additional interesting journalctl options

Option Description

 -f, --follow This journalctl option is similar to using the tail -f
command. It shows the most recent entries in the journal

that match whatever other options have been specified and

also displays new entries as they occur. This can be useful

when watching for events and when testing changes.

-e, --pager-end The -e option displays the end of the data stream instead

of the beginning. This does not reverse the order of the

data stream; rather, it causes the pager to jump to the end.

--file [journal
filename]

Specify the name of a specific journal file in /var/log/

journal/<journal subdirectory>.

 -r, --reverse This option reverses the order of the journal entries in the

pager so that the newest are at the top rather than the

bottom.

-n, --lines=[X] Shows the most recent X number lines from the journal.

--utc Displays the times in UTC rather than local time.

(continued)

Chapter 9 Using systemd Journals

241

Option Description

-g, --grep=[REGEX] I like the -g option because it enables me to search for

specific patterns in the journal data stream. This is just like

piping a text data stream through the grep command. This

option uses Perl-compatible regular expressions.

--disk-usage This option displays the amount of disk storage used by

the current and archived journals. It might not be as much

as you think.

--flush Journal data stored in the virtual filesystem /run/log/

journal/ which is volatile storage is written to /var/log/

journal/ which is persistent storage.

--sync Writes all unwritten journal entries (still in RAM but

apparently not in /run/log/journal) to the persistent

filesystem. All journal entries known to the journaling

system at the time the command is entered are moved to

persistent storage.

--vacuum-size=
--vacuum-time=
--vacuum-files=

These can be used singly or in combination to remove the

oldest archived journal files until the specified condition is

met. These options only consider the archived files and not

active files, so the result might not be exactly what was

specified.

Table 9-3.  (continued)

More options can be found in the journalctl man page. We explore

some of the entries from Table 9-3 in the next sections.

Chapter 9 Using systemd Journals

242

�Journal Files

EXPERIMENT 9-4: EXPLORING THE JOURNAL FILES

If you’ve not already done so, be sure to list the files in the journal directory

on your host. Remember that the directory containing the journal files has a

long random number as a name. This directory contains multiple active and

archived journal files including some for users.

cd /var/log/journal/
ll
total 8
drwxr-sr-x+ 2 root systemd-journal 4096 Apr 25 13:40
d1fbbe41229942289e5ed31a256200fb
cd d1fbbe41229942289e5ed31a256200fb
ll
<SNIP>
-rw-r-----+ 1 root systemd-journal 4360720 Mar 14 10:
15 user-1000@81e2499fc0df4505b251bf3c342e2d88-0000000000
00cfe6-0005f6b5daebaab2.journal
-rw-r-----+ 1 root systemd-journal 4246952 Apr 25 09:
17 user-1000@81e2499fc0df4505b251bf3c342e2d88-00000000
0000f148-0005f74376644013.journal
-rw-r-----+ 1 root systemd-journal 8388608 Apr 28 05:49
user-1000.journal
-rw-r-----+ 1 root systemd-journal 3692360 Mar 12 11:43
user-1001@1c165b49f11f42399380c5d449c7e7e1-000000000000
5151-0005f4fc6561390c.journal

You can see the user files in this listing for the UID 1000, which is our Linux

login account. The --files option allows us to see the content of specified files

including the user files.

Chapter 9 Using systemd Journals

243

journalctl --file user-1000.journal

This output shows, among other things, the temporary file cleanup for the user

with UID 1000. Data relating to individual users may be helpful in locating

the root cause of problems originating in user space. I found a number of

interesting entries here. Try it on your VM and see what you find.

After experimenting with this for a while, make root’s home directory the PWD.

�Adding Your Own Journal Entries
It can be useful to add your own entries to the journal. For example, you

may want to record checkpoints reached by a program in the journal.

This can assist with problem-solving. Adding entries to the journal is

accomplished with the systemd-cat program which allows us to pipe the

STDOUT of a command or program to the journal.

EXPERIMENT 9-5: ADDING ENTRIES TO THE JOURNAL

This command can be used as part of a pipeline on the command line or in

a script.

echo "Hello world" | systemd-cat -p info -t myprog

The -p option specifies a priority, “emerg,” “alert,” “crit,” “err,” “warning,”

“notice,” “info,” “debug,” or a value between 0 and 7 that represents each

of those named levels. These priority values are the same as defined by

syslog(3). The default is “info.” The -t option is an identifier which can be any

arbitrary short string such as a program or script name. This string can be

used for searches by the journalctl command.

List the five most recent entries in the journal.

Chapter 9 Using systemd Journals

244

journalctl -n 5

Jan 06 07:20:58 testvm1.both.org systemd[1]: sysstat-
collect.service: Deactivated successfully.
Jan 06 07:20:58 testvm1.both.org systemd[1]: Finished
sysstat-collect.service - system activity accounting tool.
Jan 06 07:20:58 testvm1.both.org audit[1]: SERVICE_
START pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit=sysstat-collect comm="systemd" exe=">
Jan 06 07:20:58 testvm1.both.org audit[1]: SERVICE_
STOP pid=1 uid=0 auid=4294967295 ses=4294967295
msg='unit=sysstat-collect comm="systemd" exe="/>
Jan 06 07:28:14 testvm1.both.org myprog[132792]:
Hello world
lines 1-5/5 (END)

There is not a lot happening on our VMs, so the last line is the journal entry we

created. We can also use the string “myprog” to search for the entry.

journalctl -t myprog
Jan 06 07:28:14 testvm1.both.org myprog[132792]:
Hello world

This can be a powerful tool to embed in the Bash programs we use for

automation. We can use it to create records of when and what our programs

do in case problems occur.

�Journal Storage Usage
Journal files take up storage space, so it is necessary to monitor them. That

way, we can rotate them and delete old ones when necessary in order to

free up storage space. In this context, rotation means to stop adding data

Chapter 9 Using systemd Journals

245

to the currently active journal (or log) file and to start a new file and add all

future data to that one. Old, inactive files are maintained for some arbitrary

time span and deleted when that time expires.

The journalctl command provides methods for us to see how much

storage space is being used by the journals as well as configuration of the

parameters used to trigger rotation. It also allows us to initiate rotation

manually on demand.

EXPERIMENT 9-6: JOURNAL STORAGE AND ROTATION

Start by determining how much storage space is used by the journals.

journalctl --disk-usage
Archived and active journals take up 551.2M in the
file system.

The result on my primary workstation is 3.5GB. Journal sizes depend greatly

on the use to which a host is put and daily runtime. My physical hosts all

run 24x7.

The /etc/systemd/journald.conf file can be used to configure the

journal file sizes and rotation and retention times to meet any needs not

met by the default settings. You can also configure the journal file directory

on the storage device or whether to store everything in RAM—volatile

storage. If the journals are stored in RAM, they will not be persistent

between boots.

The default time unit in the journald.conf file is seconds, but that can

be overridden using the suffixes “year,” “month,” “week,” “day,” “h,” or “m.”

Suppose you want to limit the total amount of storage space allocated

to journal files to 1GB, to store all journal entries in persistent storage, keep

a maximum of ten files, and delete any journal archive files that are more

Chapter 9 Using systemd Journals

246

than one month old. You can configure this in /etc/systemd/journald.conf

using the following entries:

SystemMaxUse=1G
Storage=persistent
SystemMaxFiles=10
MaxRetentionSec=1month

By default, the SystemMaxUse is 10% of available disk space. All of the

default settings have been fine for the various systems I work with, and

I have had no need to change any of them. The journald.conf man page

also states that the time-based settings that can be used to determine

the length of time to store journal entries in a single file or to retain older

files are normally not necessary. This is because the file number and size

configurations usually force rotation and deletion of old files before any

time settings might come into effect.

The SystemKeepFree option can be used to ensure that a specific

amount of space is kept free for other data. Many databases and

application programs use the /var filesystem to store data, so ensuring

enough storage space is available can be critical in systems with smaller

hard drives and a minimum amount of space allocated to /var.

If you do make changes to this configuration, be sure to monitor the

results carefully for an appropriate period of time to ensure that they are

performing as expected.

�Journal File Rotation
The journal files are typically rotated automatically based upon the

configuration in the /etc/systemd/journald.conf file. Files are rotated

whenever one of the specified conditions is met. So if, for one example,

the amount of space allocated to journal files is exceeded, the oldest file or

files are deleted, the active file is made into an archive, and a new active

file is created.

Chapter 9 Using systemd Journals

247

Journal files can also be rotated manually. I suggest using the --flush

option first to ensure that all current data is moved to persistent storage

to ensure that it is all rotated and the new journal files start empty. This

option is listed in Table 9-3 but can also be found in the option section of

the journalctl man page.

It is also possible to purge old journal files without performing a

file rotation. The vacuum-size=, vacuum-files=, and vacuum-time=

commands are tools that can be used to delete old archive files down to

a specified total size, number of files, or time prior to the present. The

option values consider only the archive files and not the active ones, so the

resulting reduction in total file size might be somewhat less than expected

unless you flush all data from volatile storage to persistent storage.

EXPERIMENT 9-7: JOURNAL FILE MANAGEMENT

Before starting this experiment, we need to set some conditions to make it

work properly. As I discovered when creating this experiment, there is not

enough data to cause a rotation even when performed manually.

There were 39 files that took up about 497M on my VM.

Open a terminal session and escalate your privileges to root. Make /var/log/

journal/<Your-Journal-Directory> the PWD and look at the files in the journal

directory. I have only a single journal directory on my VM, but the files it

contains go back about three months.

cd /var/log/journal/d1fbbe41229942289e5ed31a256200fb
[root@studentvm1 d1fbbe41229942289e5ed31a256200fb]# ls
system@0005f2b035b5ec5c-a8d2b8b6d3f7b880.journal~
system@0005f2b04d5b1e40-350154cf9aedf8d0.journal~
system@0005f2b0d952b50f-9a23264d3adef5f5.journal~
system@0005f2b0fa23a6f4-376b000f611d8ac3.journal~
system@0005f2b13b66495c-2888d80cf01e1793.journal~

Chapter 9 Using systemd Journals

248

system@0005f2b8d01f6b1b-36122a575e54d385.journal~
system@0005f2b8eaf61ac9-3071861fcecbcb11.journal~
system@0005f2b90329031c-bd4bef8a7bdce927.journal~
system@0005f2ff9e4c5cdc-e1f2ef3a72fc7675.journal~
system@0005f301c088fb9c-789178eb0f4ea0fd.journal~
system@0005f32735d4452f-4f5917137c44c9fd.journal~
system@0005f404e4026118-048976ba41c03dc2.journal~
system@0005f41ea1668b3d-cc6c81aed5f935f1.journal~
system@0005f42ea3e53fc5-ce69998ea6a38a3f.journal~
system@0005f431322b92b4-831c6756317a6dd1.journal~
system@0005f453110b09e4-6c80463d876ae956.journal~
system@0005f4d7e9ca1d4a-80c25a84c8aec6d1.journal~
system@0005f56bd926461d-f89a91e4425992ef.journal~
system@0005f5b08a161a8f-309c9fceb66b753c.journal~
system@0005f5b3b6ea5881-a8dc0539c4ab3197.journal~
system@0005f5fe836012c6-d6ce03272713f47b.journal~
system@0005f637ce5e849a-330fd866eb58a62e.journal~
system@0005f69cf2da4392-3e38a13f8e0bc669.journal~
system@0005f6c9e94576a2-f314d048307ac935.journal~
system@0005f6ca18260e8b-8c793b1d198593b6.journal~
system@0005f6ca2587111d-ea8996c255b04c5f.journal~
system@0005f7401797df22-5ecb9901d0977a51.journal~
system@0005f764896fe3c2-672a972fa95262ce.journal~
system@0005f8071a1af6a7-97ce48062602e8ed.journal~
system@34a3369229c84735810ef3687e3ea888-0000000000000001-
0005f69cf1afdc92.journal
system@a4c3fe82821e4894a5b2155fe84a1bb0-0000000000000001-
0005f6ca2400d3f8.journal
system@cd7e3b29fb8e45bdb65d728e1b69e29e-0000000000000001-
0005f80719125411.journal
system.journal
user-1000@0005f43566ce0a41-96c83a31073b4c54.journal~

Chapter 9 Using systemd Journals

249

user-1000@81e2499fc0df4505b251bf3c342e2d88-000000000000068a-
0005f43566ce084c.journal
user-1000@81e2499fc0df4505b251bf3c342e2d88-000000000000cfe6-
0005f6b5daebaab2.journal
user-1000@81e2499fc0df4505b251bf3c342e2d88-000000000000f148-
0005f74376644013.journal
user-1001@1c165b49f11f42399380c5d449c7e7e1-0000000000005151-
0005f4fc6561390c.journal
journalctl --disk-usage
Archived and active journals take up 496.8M in the
file system.
ll | wc -l
39
[root@studentvm1 d1fbbe41229942289e5ed31a256200fb]#

Do a long listing of the files in this directory, so you will have something

to compare with the results of the commands we are going to be

experimenting with.

Power off the VM and take a new snapshot of your StudentVM1. Add the

following text in the “Description” field:

“Taken at the beginning of Experiment 9-7: Journal File Management. This

allows restoring this snapshot in order to see the different effects of journal

rotation and vacuum on the same set of starting journal data.”

You will restore this snapshot multiple times during this experiment. Then

boot the VM.

The most simple approach to journal file management is a simple rotation.

journalctl --rotate

List the files in the journal directory. They haven’t changed much—not at

all, really. I don’t know why as the journalctl man page indicates that this

Chapter 9 Using systemd Journals

250

command should stop adding data to the existing files and start new ones.

Because this did not work as the man page said it should, I reported the failure

on Red Hat’s Bugzilla web page.

The following command does work, and it purges old archive files so that only

ones that are less than one month old are left. You can use the “s,” “m,” “h,”

“days,” “months,” “weeks,” and “years” suffixes.

journalctl --vacuum-time=1month
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/system@0005f2b035b5ec5c-
a8d2b8b6d3f7b880.journal~ (16.0M).
Deleted archived journal /var/log/journal/d1fbbe41229942289
e5ed31a256200fb/user-1000@0005f43566ce0a41-96c83a31073b4c54.
journal~ (8.0M).
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/system@0005f2b04d5b1e40-
350154cf9aedf8d0.journal~ (8.0M).
<SNIP>
Vacuuming done, freed 488.8M of archived journals from /
var/log/journal/d1fbbe41229942289e5ed31a256200fb.
Vacuuming done, freed 0B of archived journals from /run/
log/journal.
Vacuuming done, freed 0B of archived journals from /var/
log/journal.

Check the disk usage.

Power off the VM and restore the last snapshot. You did create that snapshot,

right? Verify that the expected number of files and data are present.

This command deletes all archive files except for the four most recent ones.

If there are fewer than four archive files, nothing will be done, and the original

number of files will remain.

Chapter 9 Using systemd Journals

251

journalctl --vacuum-files=4
<SNIP>
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/system@0f3b8bac99bd4559a61f0
8fbae3fd4da-000000000002b80c-000627bf01a840c9.journal
(11.2M).
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/user-1000@0f3b8bac99bd455
9a61f08fbae3fd4da-000000000002d8a2-0006284f5ee8080e.
journal (3.9M).
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/system@0f3b8bac99bd4559a61f08fb
ae3fd4da-000000000002df97-00062859b09f35c5.journal (5.2M).
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/system@0f3b8bac99bd4559a61f08fb
ae3fd4da-000000000002ea61-0006286424c3b24e.journal (15M).
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/user-1000@0f3b8bac99bd455
9a61f08fbae3fd4da-0000000000033ba3-00062abf3d69e051.
journal (3.6M).
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/system@0f3b8bac99bd4559a61f08fb
ae3fd4da-0000000000033d59-00062ac889ba8f22.journal (5.9M).
Deleted archived journal /var/log/journal/79c9dac
7c584478196d4cd8c6243884d/system@0f3b8bac99bd4559a61f08fb
ae3fd4da-0000000000034cd3-00062ae84ff9825a.journal (6M).
Vacuuming done, freed 363.1M of archived journals from /
var/log/journal/79c9dac7c584478196d4cd8c6243884d.

Check the disk usage after this vacuum and list the files in the journal

directory. This reduced the number of files in my journal directory from about

35 to 4.

Chapter 9 Using systemd Journals

252

Power off and restore the last snapshot again. Verify that the expected number

of files and data are present.

This last vacuum command deletes archive files until only 200MB or less of

archived files are left.

journalctl --vacuum-size=200M
Vacuuming done, freed 0B of archived journals from /var/
log/journal.
Vacuuming done, freed 0B of archived journals from /run/
log/journal.
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/system@0005f2b035b5ec5c-
a8d2b8b6d3f7b880.journal~ (16.0M).
Deleted archived journal /var/log/journal/d1fbbe412299
42289e5ed31a256200fb/user-1000@0005f43566ce0a41-
96c83a31073b4c54.journal~ (8.0M).
<snip>
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/system@0005f4d7e9ca1d4a-
80c25a84c8aec6d1.journal~ (24.0M).
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/system@0005f56bd926461d-
f89a91e4425992ef.journal~ (24.0M).
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/user-1001@1c165b49f1
1f42399380c5d449c7e7e1-0000000000005151-0005f4fc6561390c.
journal (3.5M).
Deleted archived journal /var/log/journal/
d1fbbe41229942289e5ed31a256200fb/system@0005f5b08a161a8f-
309c9fceb66b753c.journal~ (16.0M).

Chapter 9 Using systemd Journals

253

Vacuuming done, freed 305.5M of archived journals from
/var/log/journal/d1fbbe41229942289e5ed31a256200fb.

Check the disk usage again.

Only complete files are deleted. The vacuum commands do not truncate

archive files to meet the specification. They also only work on archive files, not

active ones. But they do work and do what they are supposed to.

�Summary
The systemd journals provide a complete, time-sequenced record of Linux

system activity. We’ve looked at how to use the journal with the journalctl

command to extract and use that data.

We discussed some ways to configure journal retention and rotation.

We determined that the systemd journals are a hybrid of ASCII text and

binary data, thus making use of standard Linux tools that work with ASCII

problematic at best. However, the journalctl command is a powerful

tool that we can use to extract data from the systemd journals with great

precision and finesse.

Adding our own entries into the journal is easy and can be used in

scripts and on the command line.

We also learned how to manage disk space by manually rotating and

vacuuming journals.

�Exercises
Perform these exercises to complete this chapter.

If possible, use a noncritical, physical Linux host that has been in

service for some time to perform these exercises. Otherwise, continue to

use the VM.

Chapter 9 Using systemd Journals

254

	 1.	 Determine the full date range of the journals for

the host.

	 2.	 View the dmesg data for the last two boots using

three different methods—but not the dmesg

command.

	 3.	 Are there any critical entries in the journals?

	 4.	 If so, explore them and see if you can determine

the cause.

	 5.	 Are there any alert or warning messages?

	 6.	 If so, explore them and see if you can determine

the cause.

Chapter 9 Using systemd Journals

255© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_10

CHAPTER 10

Managing the Firewall
with firewalld

�Objectives
In this chapter, you will learn to

•	 Describe the function of a firewall

•	 Define and describe the term “port”

•	 Use firewalld zones for firewall management under

different sets of circumstances

•	 Set a default zone

•	 Assign network interfaces to a zone

•	 Modify existing zones

•	 Create a new zone to meet a set of specifications

•	 Integrate Fail2Ban dynamic firewall software with

firewalld to automate protection against specific

Internet attacks

https://doi.org/10.1007/979-8-8688-1328-3_10#DOI

256

�Introduction
Firewalls are a vital part of network security, so it’s important for a

SysAdmin to be familiar with how they work. If you understand firewalls,

you can keep your network secure by making intelligent choices about the

traffic you allow in and out.

Because “firewall” is such an exciting name, people often imagine an

intricate Tron-style1 neon battle happening on the outskirts of a network,

with packets of rogue data being set alight by the defenses to protect

your users’ techno-fortress. In reality, a firewall is just a piece of software

controlling incoming and outgoing network traffic.

Note  firewalld is not part of systemd. However, it is an important
part of security and system administration. It has also adopted the
systemd command structure’s use of multiple sub-commands and is
the default firewall interface on many distributions, so I’ve decided to
include it here.

�Ports
A firewall is able to manage network traffic by monitoring network ports. In

the world of firewalls, the term port doesn’t refer to a physical connection

like a USB, VGA, or HDMI port. For the purpose of firewalls, a port is an

artificial construct created by the operating system to represent a pathway

for a specific type of data. This system could have been called anything,

like “contacts,” “connections,” or even “penguins,” but the creators used

1 Wikipedia, “Tron,” https://en.wikipedia.org/wiki/Tron

Chapter 10 Managing the Firewall with firewalld

https://en.wikipedia.org/wiki/Tron

257

“ports,” and that’s the name that we still use today. The point is there’s

nothing special about any port; they are just a way to designate an address

where data transference happens.

There are a number of ports that are well-known, but even these are

only conventions. For instance, you may know that HTTP traffic occurs

on port 80, HTTPS traffic uses port 443, FTP uses port 21, and SSH uses

port 22. When your computer transmits data to another computer, it adds

a prefix to the data to indicate which port it wants to access. If the port on

the receiving end is accepting data of the same protocol as the data you are

sending, then the data is successfully exchanged as seen in Figure 10-1.

Figure 10-1.  An SSH—or any other—connection can only be made if
the server is listening on the correct port

Chapter 10 Managing the Firewall with firewalld

258

You can see this process in action by going to any website. Open a web

browser and navigate to example.com:80, which causes your computer

to send an HTTP request to port 80 of the computer serving the example.

com website. You receive a web page in return. Web browsers don’t require

you to enter the port you want to access every time you navigate to a URL,

however, because it’s assumed that HTTP traffic accesses port 80 or 443.

EXPERIMENT 10-1: TESTING PORTS

You can test this process using a terminal-based web browser. The curl

command also returns some statistics that are displayed before the HTTP code

that makes up the first four lines of the web server’s response.

[root@testvm1:~]# curl --connect-timeout 3 "http://example.com:80" | head -n4
 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 1256 100 1256 0 0 12337 0 --:--:-- --:--:-- --:--:-- 12435

<!doctype html>

<html>

<head>

 <title>Example Domain</title>

[root@testvm1:~]#

Tip T he example.com domain is a valid site that has been created
for use by anyone who needs to test some basic network functions
such as simple pings, traceroute, HTTP connections, and more. The
sites example.org and example.net are also available for testing.

Using the same notation, you can force rejection by navigating to a website

using a nonstandard port. Navigate to an arbitrary port, example.com:79, for

instance. Your request for a web page is declined.

Chapter 10 Managing the Firewall with firewalld

259

[root@testvm1:~]# curl --connect-timeout 3 "http://
example.com:79"
curl: (28) Failed to connect to example.com port 79 after
1703 ms: Connection timed out
[root@testvm1:~]#

The correlation between ports and protocols are merely conventions

mutually agreed upon by a standards group and a user base. These settings

can be changed on individual computers. In fact, back in the pioneer

days of computing, many people thought that just changing the port

number of popular services would prevent an attack. Attacks are a lot more

sophisticated now so there’s little value in surprising an automated port

scanner by changing which port a service listens on.

Instead, a firewall governs what activity is permitted in or out on any

given port.

�Firewall Rules
By default, most firewalls have rule sets that block all incoming packets

unless explicitly allowed. Certainly, this is true for Fedora and other

Red Hat–based distributions that use firewalld or iptables. This, plus the

fact that most server services are not needed so are not installed or not

enabled, means that Linux is very secure right from the initial installation.

Outbound packets are not blocked by the firewall so that we don’t need

to add rules for protocols like email, SSH, and web browsers just to access

remote hosts using these services from our client hosts.

The flow of packets as they enter the Linux host is generally from

start to finish through the rule set. If a packet matches one of the rules,

the action defined in the rule is taken. Ultimately, each packet will be

accepted, rejected, or dropped. When a packet matches a rule that has

Chapter 10 Managing the Firewall with firewalld

260

one of these three actions, that action is taken and the packet travels no

further through the rules. The three possible actions require just a bit of

explanation:

•	 Accept: The packet is accepted and passed to the

designated TCP port and a server such as a web server,

Telnet, or SSH, to which it is addressed.

•	 Reject: The packet is rejected and sent back to the

originator with a message. This message allows the host

on the other end to know what happened and try again

if need be or to terminate the connection.

•	 Drop: The packet is dropped and proceeds no further

through the rules. No message is sent back to the

originator. This action maintains the connection for the

timeout period specified on the sender’s end. This is

useful when blocking IP addresses of known spammers

so that when they attempt a connection their sending

host must wait through the timeout to try again, thus

slowing down their attacks significantly.

All Linux firewalls are based on a kernel protocol called netfilter2

which interprets and enforces the rules. Netfilter.org3 is the organization

responsible for netfilter and its functions. The administrative tools we use,

like firewalld and IPTables, simply allow us to add, modify, and remove

netfilter rules that examine each data packet and determine how to

handle it.

2 Wikipedia, “netfilter,” https://en.wikipedia.org/wiki/netfilter
3 Netfilter.org, https://www.netfilter.org/index.html

Chapter 10 Managing the Firewall with firewalld

https://en.wikipedia.org/wiki/netfilter
https://www.netfilter.org/index.html

261

�Firewall Tools
There are three primary tools that are commonly used to manage Netfilter

firewall rules, iptables, nftables, and firewalld. All are intended to make

firewall management a bit easier for SysAdmins, but they differ in how they

approach that task, and the use cases at hand can determine which tool is

best. Fedora installs all three tools by default.

Red Hat’s online documentation, Configuring and managing

networking,4 contains recommendations for using these tools.

When to use firewalld, nftables, or iptables

The following is a brief overview in which scenario you

should use one of the following utilities:

•	 firewalld: Use the firewalld utility for simple firewall use

cases. The utility is easy to use and covers the typical use

cases for these scenarios.

•	 nftables: Use the nftables utility to set up complex

and performance-critical firewalls, such as for a whole

network.

•	 iptables: The iptables utility on Red Hat Enterprise

Linux uses the nf_tables kernel API instead of the

legacy back end. The nf_tables API provides backward

compatibility so that scripts that use iptables commands

still work on Red Hat Enterprise Linux. For new firewall

scripts, Red Hat recommends to use nftables.

—Configuring and managing networking, Chapter 46

4 Red Hat, “Configuring and managing networking,” https://access.
redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/
configuring_and_managing_networking/index

Chapter 10 Managing the Firewall with firewalld

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/index

262

These tools use different user interfaces and store their data in

different formats. We will cover firewalld in some depth in this chapter.

My reading indicates that iptables on Linux is more or less obsolete

and will probably be discontinued. I have already converted most of my

hosts to firewalld and will be completing the rest soon. I like firewalld

and it appears to meet my needs, including the ability to manage a true

DMZ. The use of nftables, because it is designed for very complex rule sets,

is outside the scope of this book.

�Block (Almost) Everything
Common advice when configuring a firewall is to first block everything

and then open the ports you know you actually need. That means you have

to know what you need, though, and sometimes figuring that out is an

afternoon’s job all its own.

If your organization runs its own DNS or DNS caching service, for

instance, then you must remember to unblock the port (usually 53)

handling DNS communication. If you rely on SSH to configure your servers

remotely, then you must not block that port. You must account for every

service running on your infrastructure, and you must understand whether

that service is internal-only or whether it needs to interact with the

outside world.

In the case of proprietary software, there may be calls made to the

outside world that you’re not even aware of. If some applications react

poorly to a strict firewall recently put in place, you may have to reverse

engineer (or talk to the application’s support line) to discover what kind of

traffic it’s trying to create and why. In the open source world, this issue is

less common, but it’s not outside the realm of possibility, especially in the

case of complex software stacks (e.g., today even media players make calls

out to the Internet, if only to fetch album art or a track listing).

Chapter 10 Managing the Firewall with firewalld

263

�Crunchy on the Outside
I have encountered many networks in my career that SysAdmins say are

“crunchy on the outside, soft and gooey on the inside.”5 This refers to

some types of candy that have a hard shell but are quite soft in the middle.

Networks can be like that. When the firewall on the edge of the network is

cracked, no matter how hard that was, the rest of the network is laid open

to plunder.

As a result, Linux distributions all ensure that they are installed with

an active firewall that allows access only by a small number of necessary

services.

As you will see in this chapter, I have experimented with reducing the

number of open ports even smaller because I like to ensure the maximum

level of security on all Linux hosts in my network. This includes an active

firewall on every one.

�firewalld
firewalld is the default firewall management daemon used by current

releases of Fedora and many other distributions. It has superseded but

not replaced iptables which has been around for many years. firewalld

provides some interesting features such as runtime rules in addition to

permanent rules. Runtime rules can be used to meet temporary conditions

and can be left active until a reboot, or they can be manually removed,

or they can be set to expire after a predefined period of time. Permanent

rules—as their name suggests—are persistent through reboots.

5 Extreme Networks Blog, https://academy.extremenetworks.com/extreme-
networks-blog/networks-hard-crunchy-on-the-outside-soft-gooey-on-the-
inside/, 2019.

Chapter 10 Managing the Firewall with firewalld

https://academy.extremenetworks.com/extreme-networks-blog/networks-hard-crunchy-on-the-outside-soft-gooey-on-the-inside/
https://academy.extremenetworks.com/extreme-networks-blog/networks-hard-crunchy-on-the-outside-soft-gooey-on-the-inside/
https://academy.extremenetworks.com/extreme-networks-blog/networks-hard-crunchy-on-the-outside-soft-gooey-on-the-inside/

264

firewall-cmd uses preconfigured zones as presets, giving you sane

defaults to choose from. Doing this saves you from having to build a

firewall from scratch. Zones apply to a network interface, so on a server

with two Ethernet interfaces, you may have one zone governing one

Ethernet interface and a different zone governing the other.

Standard systemctl commands are used to start, stop, enable, and

disable firewalld. All other interactions with firewalld are through its own

set of tools.

Changes made to firewalld are instant. The firewalld.service does not

need to be restarted. There are a couple circumstances that require you to

reload the firewalld configuration. I will point those out.

The firewalld.org website has excellent documentation you can use.6

�firewalld Zones
The firewalld service can provide a complex and intricate set of rules for a

firewall. It uses the concept of zones to collect related rules in such a way

as to create levels of trust. Each zone represents a level of trust that can

be independently modified without affecting other zones. firewalld has

several predefined zones.

Each network interface is assigned a zone and all network traffic to

that interface is filtered by the rules in that zone. Network interfaces can

be easily switched from one zone to another if necessary, thus making

preconfigured changes easy. These zones are arbitrary constructs

developed to meet a specific set of needs in a firewall. For example, a

network interface that is connected to the internal network would be

placed in the trusted zone, while an interface that connects to the Internet

would be placed in the external or dmz zones, depending upon the logical

and physical structure of the network.

6 firewalld.org, Documentation, https://firewalld.org/documentation/
concepts.html

Chapter 10 Managing the Firewall with firewalld

https://firewalld.org/documentation/concepts.html
https://firewalld.org/documentation/concepts.html

265

firewalld has nine predefined zones that can be used as is or modified

to meet local needs. Table 10-1 lists the predefined firewalld zones and a

short description of each.

Table 10-1.  The default firewalld zones

Zone Description

drop Any incoming network packets are dropped; there is no reply. Only

outgoing network connections are possible.

block Any incoming network connections are rejected with an icmp-host-

prohibited message for IPv4 and icmp6-adm-prohibited for IPv6. Only

network connections initiated within this system are possible.

public For use in public areas. You do not trust the other computers on

networks to not harm your computer. Only selected incoming

connections are accepted.

external For use on external networks with IPv4 masquerading enabled especially

for routers. You do not trust the other computers on networks to not

harm your computer. Only selected incoming connections are accepted.

dmz For computers in your demilitarized zone that are publicly accessible

with limited access to your internal network. Only selected incoming

connections are accepted.

work For computers in your demilitarized zone that are publicly accessible

with limited access to your internal network. Only selected incoming

connections are accepted.

home For use in home areas. You mostly trust the other computers on

networks to not harm your computer. Only selected incoming

connections are accepted.

internal For use on internal networks. You mostly trust the other computers

on the networks to not harm your computer. Only selected incoming

connections are accepted.

trusted All incoming network connections are accepted.

Chapter 10 Managing the Firewall with firewalld

266

�Exploring the Firewall

Your work infrastructure may have a server in a rack with the sole purpose

of running a firewall, or you may have a firewall embedded in the router—

or modem—acting as your primary gateway to the Internet. You probably

also have a firewall running on your personal workstation or laptop. All of

these firewalls have their own configuration interface.

firewall-cmd is a front-end tool for managing the firewalld daemon,

which interfaces with the Linux kernel’s netfilter framework. This stack

probably isn’t present on the embedded modems common in small- to

medium-sized businesses, but it’s on or available for any Linux distribution

that uses systemd.

Let’s do some initial exploration of firewalld. In Experiment 10-2, we’ll

poke around a bit and make a simple change.

EXPERIMENT 10-2: INITIAL EXPLORATION OF FIREWALLD

Without an active firewall, firewall-cmd has nothing to control, so the first step

is to ensure that firewalld is running:

[root@testvm1:~]# systemctl enable --now firewalld

This command starts the firewall daemon and sets it to auto-load upon reboot.

View the status of the firewalld.service. This does not show anything about

the firewalld configuration such as which ports are open or which zones

are in use.

[root@testvm1:~]# systemctl status firewalld.service
● firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/usr/lib/systemd/system/firewalld.service;
enabled; preset: enabled)
Drop-In: /usr/lib/systemd/system/service.d
└─10-timeout-abort.conf, 50-keep-warm.conf

Chapter 10 Managing the Firewall with firewalld

267

Active: active (running) since Sun 2025-01-12 16:03:25
EST; 17h ago
Invocation: bd91633a8da24f7a8ee6aa1122b737e5
Docs: man:firewalld(1)
Main PID: 1210 (firewalld)
Tasks: 2 (limit: 9472)
Memory: 48.8M (peak: 49M)
CPU: 898ms
CGroup: /system.slice/firewalld.service
└─1210 /usr/bin/python3 -sP /usr/sbin/firewalld
--nofork --nopid

Jan 12 16:03:24 testvm1.both.org systemd[1]: Starting
firewalld.service - firewalld - dynamic firewall daemon...
Jan 12 16:03:25 testvm1.both.org systemd[1]: Started
firewalld.service - firewalld - dynamic firewall daemon.
Jan 13 09:29:59 testvm1.both.org systemd[1]: Started
firewalld.service - firewalld - dynamic firewall daemon.

The firewalld command-line tool can show whether it is running, but that is all

so it is not especially helpful. This command is useful when used in a script

used to automate firewall and network actions.

[root@testvm1:~]# firewall-cmd --state
running

This next command shows all of the supported zones in sorted order with

uppercase first.

[root@testvm1:~]# firewall-cmd --get-zones
FedoraServer FedoraWorkstation block dmz drop external home
internal nm-shared public trusted work

Chapter 10 Managing the Firewall with firewalld

268

One important bit of data to know is what the default zones are for the running

systems.

[root@testvm1:~]# firewall-cmd --get-default-zone
public

This shows that the default setting is one of the most restricted zones.

However, this command does not show the currently assigned zones for the

installed network interfaces. For that we do the following which lists each zone

and displays the interfaces assigned to that zone:

[root@testvm1:~]# firewall-cmd --get-active-zones
public (default)
interfaces: enp0s3 enp0s8

We now know that both interfaces on my VM are in the public zone. Your VM

will probably only have a single interface, enp0s3. If you’re using a physical

Linux host, the interfaces will depend upon the physical hardware and where

it’s installed on the PCI-e or USB bus.

This leads us to determining the actual configuration for the public zone. This

command displays the configuration for the active zones. Only the public zone

is active. It also shows the interfaces assigned to this zone.

[root@testvm1:~]# firewall-cmd --zone=public --list-all
public (default, active)
 target: default
 ingress-priority: 0
 egress-priority: 0
 icmp-block-inversion: no
 interfaces: enp0s3 enp0s8
 sources:
 services: dhcpv6-client mdns ssh
 ports:
 protocols:

Chapter 10 Managing the Firewall with firewalld

269

 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

You can see the services listed in the Services field for the public zone. Look at

the permanent settings for the public zone.

[root@testvm1:~]# firewall-cmd --zone=public --list-all
--permanent
public
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: dhcpv6-client mdns ssh
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Do you see the difference? There are no interfaces assigned because this is

only a configuration and the actual assignments are performed when firewalld

is activated at boot time or is restarted.

Chapter 10 Managing the Firewall with firewalld

270

�Adding a New Zone

Although the preexisting zones may meet our needs, sooner than later

there will be a need that none of them can meet. We could simply modify

one of these original zones, but I think it wise to create a new zone and

leave the originals intact.

EXPERIMENT 10-3: ADDING A NEW ZONE

To create a new zone, use the --new-zone option. This creates a zone file that

rejects everything because it contains no rules to open any specific ports such

as SSH. All firewall-cmd actions persist only until the firewall or the computer

running it restarts. Anything you want to be permanent must be accompanied

by the --permanent flag. But you must do both in order to make it permanent

and activate it immediately.

Create a new permanent zone called corp and then do it again without

the --permanent flag to activate the zone immediately.

firewall-cmd --new-zone corp --permanent
success
ll /etc/firewalld/zones
total 12
-rw-r--r-- 1 root root 54 May 17 13:34 corp.xml
-rw-rw-r--. 1 root root 353 May 17 09:05 public.xml
firewall-cmd --reload
success

Before assigning any network interface to this new zone, add the ssh service

so you can access it remotely. Make /etc/firewalld/zones the PWD. Then look

at the resulting file.

[root@testvm1 zones]# firewall-cmd --zone corp --add-service
ssh --permanent

Chapter 10 Managing the Firewall with firewalld

271

success
[root@testvm1 zones]# firewall-cmd --zone corp --add-
service ssh
success
[root@testvm1 zones]# cat corp.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <service name="ssh"/>
</zone>

Your new zone, called corp, is now active, rejects all but SSH traffic, and is

assigned to no specific network interface. We’ll look at zone files in more detail

in another experiment in this chapter.

To make corp the active and the default zone for the network interface you

want to protect (enp0s3 in this example), use the --change-interface option.

[root@testvm1 zones]# firewall-cmd --change-interface enp0s3
--zone corp --permanent
success
[root@testvm1 zones]# firewall-cmd --change-interface enp0s3
--zone corp
success

By making corp the default zone, all future commands are applied to corp

unless the --zone option specifies a different zone. Whether you want to set

corp as the default depends on whether you plan to make this zone as your

new primary zone. If so, the following does the job.

[root@testvm1 zones]# firewall-cmd --set-default corp ;
firewall-cmd --set-default corp --permanent

Chapter 10 Managing the Firewall with firewalld

272

To view the zones currently assigned to each interface, use the --get-active-

zones option.

[root@testvm1 zones]# firewall-cmd --get-active-zones
corp
 interfaces: enp0s3
public
 interfaces: enp0s8

This shows that each of the two interfaces I have on my VM is assigned to a

different zone.

�Zones in a Complex Environment

Adding a new zone seems to be simple at first glance. In a host where there

is only one NIC that has not been explicitly assigned a zone, it is quite

simple. Just create your new zone and set that as the default zone. There

is no need to assign the interface to a zone. Without any zone assignment,

all interfaces are protected by the default zone, no matter which one that

might be.

Changing the assignment of an interface to a different zone, it is

actually quite simple. The real problem is that everything I’ve read seems

to overcomplicate the process.

EXPERIMENT 10-4: REASSIGN A NIC TO A DIFFERENT ZONE

Start with a reboot and then verify the current status of the network interfaces.

It is always good to verify the beginning state of things—anything—before

you change it.

[root@testvm1:~]# firewall-cmd --get-zone-of-interface=enp0s3
corp
[root@testvm1:~]# firewall-cmd --get-active-zones

Chapter 10 Managing the Firewall with firewalld

273

corp
interfaces: enp0s3
public (default)
interfaces: enp0s8

You can reassign the enp0s3 interface to the dmz zone by removing it from the

current zone. This action reverts the interface to the default zone.

[root@testvm1:~]# firewall-cmd --remove-interface=enp0s3
--zone=corp --permanent
success
[root@testvm1:~]# firewall-cmd --remove-interface=enp0s3
--zone=corp
success
[root@testvm1:~]# firewall-cmd --get-active-zones
public
 interfaces: enp0s8 enp0s3
[root@testvm1:~]#

This is part of what had me confused at first. Now assign the interface to the

dmz zone and verify the change.

[root@testvm1:~]# firewall-cmd --change-interface=enp0s3
--zone=dmz --permanent
success
[root@testvm1:~]# firewall-cmd --change-interface=enp0s3
--zone=dmz
success
@testvm1:~]# firewall-cmd --get-active-zones
dmz
 interfaces: enp0s3
public
 interfaces: enp0s8
[root@testvm1:~]#

Chapter 10 Managing the Firewall with firewalld

274

Reboot one more time and again verify that enp0s3 is assigned to the dmz

zone. What services are allowed by the dmz zone?

[root@testvm1:~]# firewall-cmd --list-services --zone=dmz
ssh
[root@testvm1:~]# firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports:
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1:~]#

The dmz zone is the least trusted of any zone that actually allows any inbound

connections. It allows only SSH as an inbound connection. The two zones

that have no trust at all are drop and block. You can read the differences in

Table 10-1.

Note that changing the runtime zone is not necessary. Neither is reloading

nor using the runtime-to-permanent sub-command. The reboots we did were

not necessary to complete the task; they were only for us to verify that the

changes were verifiable and persistent through a reboot.

Chapter 10 Managing the Firewall with firewalld

275

We have seen that it’s important to understand exactly how adding

services—and ports—to a zone works. This set of guidelines is based on

my experiments and describes how it can be expected to work:

	 1.	 The public zone is the default by—ummm—
default. The default zone can be changed. A

different zone can be designated as the default, or

the configuration of the default zone can be altered

to allow a different set of services and ports.

	 2.	 All interfaces that are not specifically assigned
to any zone use the designated default zone. In

this event, all interfaces, whether there is only one

as in our VMs or ten or fifty in a complex router

environment, use the default zone whatever that

may be. Typically in Fedora, that is the public zone.

If the default zone is changed, for example, from the

public zone to the work zone, all of these interfaces

immediately start using the work zone.

	 3.	 All interfaces are explicitly assigned to a zone.
This use case is the least likely to cause unexpected

problems and confusion. Changing the default

zone does not affect any interface in any manner.

Interfaces can be reassigned to different zones, and

the zone configuration can be changed.

	 4.	 Some interfaces are explicitly assigned to a
zone, while other interfaces are not. In this use

case, changing the default zone affects only those

interfaces that are not explicitly assigned to a zone.

All of the unassigned zones begin using the new

default zone.

Chapter 10 Managing the Firewall with firewalld

276

	 5.	 Deleting the zone assignment for an interface.
The interface is unassigned and reverts to using the

default zone.

	 6.	 Changing the configuration of the default
zone. All interfaces using the default zone,

whether by explicit assignment to that zone or by

having no assignment, immediately reflect the

configuration change.

�Adding and Deleting Services

As an old—um, mature—SysAdmin, I tend to think in terms of ports when

working with firewalls and network services. Sometimes I need to look up

a port number associated with a particular service, but that is no big deal

because they are all defined in /etc/services, which has been around long

before firewalld.

EXPERIMENT 10-5: LISTING SERVICES

Look at the list of services in the /etc/services file.

[root@testvm1:~]# less /etc/services
/etc/services:
$Id: services,v 1.49 2017/08/18 12:43:23 ovasik Exp $
#
Network services, Internet style
IANA services version: last updated 2021-01-19
#
�Note that it is presently the policy of IANA to assign a
single well-known

�port number for both TCP and UDP; hence, most entries here
have two entries

Chapter 10 Managing the Firewall with firewalld

277

even if the protocol doesn't support UDP operations.
�Updated from RFC 1700, ``Assigned Numbers'' (October
1994). Not all ports

are included, only the more common ones.
#
The latest IANA port assignments can be gotten from
http://www.iana.org/assignments/port-numbers
The Well Known Ports are those from 0 through 1023.
The Registered Ports are those from 1024 through 49151
�The Dynamic and/or Private Ports are those from 49152
through 65535

#
Each line describes one service, and is of the form:
#
service-name port/protocol [aliases ...] [# comment]
tcpmux 1/tcp # �TCP port service

multiplexer
tcpmux 1/udp # �TCP port service

multiplexer
rje 5/tcp # Remote Job Entry
rje 5/udp # Remote Job Entry
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
systat 11/udp users
daytime 13/tcp
daytime 13/udp
qotd 17/tcp quote
qotd 17/udp quote

Chapter 10 Managing the Firewall with firewalld

278

chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp-data 20/udp
21 is registered to ftp, but also used by fsp
ftp 21/tcp
ftp 21/udp fsp fspd
ssh 22/tcp # �The Secure Shell

(SSH) Protocol
ssh 22/udp # �The Secure Shell

(SSH) Protocol
telnet 23/tcp
telnet 23/udp
<SNIP>

This command eliminates the comment lines and counts the remaining lines.

Notice that Telnet is on port 23.

[root@testvm1:~]# grep -v ^# /etc/services | wc -l
11472
[root@testvm1:~]#

The services file contains 11,472 entries. Many ports are listed for both TCP

and UDP protocols.

We can also list the services explicitly understood by firewalld.

[root@testvm1:~]# firewall-cmd --get-services

The output of this command is a simple space-separated list of 209 services.

These are the services that can be added to a zone by name. Any services not

listed here must be added to a zone by port.

Chapter 10 Managing the Firewall with firewalld

279

The firewalld firewall works perfectly well with services, but for

those that are not defined, it also supports the use of port numbers. In

Experiment 10-6, we first add a port to a zone and then remove it. Working

with ports like this requires the use of both the port number and the

protocol specification of either TCP or UDP.

EXPERIMENT 10-6: ADDING/REMOVING A PORT

I have arbitrarily selected the Telnet7 service from this list so that we can use

to add to and delete from our dmz zone. First, install and enable the Telnet

server and client so we can test our work.

[root@testvm1:~]# dnf -y install telnet telnet-server

Start Telnet. The command to do so does not start the server itself. It starts a

socket that listens for connections on port 23 and only starts the server when

a Telnet connection is initiated on port 23.8

[root@testvm1:~]# systemctl enable --now telnet.socket
Created symlink /etc/systemd/system/sockets.target.wants/
telnet.socket → /usr/lib/systemd/system/telnet.socket.
[root@testvm1:~]#

7 Telnet is a very old and vulnerable communications protocol. It provides no
means for encrypting data transferred over the network so is completely insecure.
SSH has replaced it as a secure choice. I use it here only for illustrative purposes.
8 This process is very similar to the xinetd service used by the SystemV init system.
Xinetd listened for connections for Telnet and other services and only started
them when a connection was made.

Chapter 10 Managing the Firewall with firewalld

280

Now we add the service to the firewall. We won’t do this permanently, but only

for the current instance.

[root@testvm1 zones]# firewall-cmd --add-service=telnet
--zone=dmz
success
[root@testvm1 zones]# firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh telnet
 ports:
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1 zones]#

Let’s test to ensure that the Telnet service works as expected.

[root@testvm1:~]# telnet testvm1
telnet testvm1
Trying 192.168.0.101...
Connected to testvm1.
Escape character is '^]'.
Kernel 6.12.9-200.fc41.x86_64 on an x86_64 (1)
testvm1 login: tuser
Password: <Enter tuser password>
Last login: Sun May 21 15:41:47 on :0

Chapter 10 Managing the Firewall with firewalld

281

Log out of the Telnet connection.

[tuser@testvm1:~]$ exit
logout
Connection closed by foreign host.
[root@testvm1:~]#

Remove the Telnet service from the dmz zone and verify the result.

[root@testvm1 zones]# firewall-cmd --remove-service=telnet
--zone=dmz
success
[root@testvm1 zones]# firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports:
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1 zones]#

Of course, we would have used --permanent if we intended to make these

changes persistent. We can also do this using the port number rather than the

service name.

[root@testvm1 zones]# firewall-cmd --add-port=23/tcp --zone=dmz
success

Chapter 10 Managing the Firewall with firewalld

282

[root@testvm1 zones]# firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports: 23/tcp
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1 zones]#

Remove port 23.

[root@testvm1 zones]# firewall-cmd --remove-port=23/tcp
--zone=dmz
success

Verify that it has been removed.

When using firewalld for firewall services, it is always a good idea to

be consistent and add new rules using the service name rather than the

port number. It may be necessary to use the port number for a service that

is not predefined although it is also possible to add a new service file to /

etc/firewalld/services with a name of the form <servicename>.service.

These files are all in XML and should be easily understandable. Most of us

will never need to modify or even look at these files. That is, unless you are

running a Linux box as a router and play a lot of 1990s games with their

own weird and wild takes on how networking should work.

Chapter 10 Managing the Firewall with firewalld

283

�Adding a Service for a Specific Period of Time

I have sometimes needed to open a port in my firewall for a limited

period of time for one reason or another. This can be done easily with

firewalld using the --timeout option in the command to add the service.

It’s definitely one of the more interesting features of firewalld that’s not

available in IPTables.

EXPERIMENT 10-7: ADD A SERVICE FOR A LIMITED TIME

We will use Telnet again for this experiment. Add the service, this time

using the timeout for ten minutes. Then verify that Telnet was added to the

dmz zone.

[root@testvm1 zones]# firewall-cmd --add-service=telnet
--zone=dmz --timeout=10m
success
[root@testvm1 zones]# firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh telnet
 ports:
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1 zones]#

Chapter 10 Managing the Firewall with firewalld

284

Test as we did above to verify that Telnet is listening. After ten minutes, check

the zone information again to verify that the Telnet service has been removed.

[root@testvm1:~]# firewall-cmd --info-zone=dmz
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s3
 sources:
 services: ssh
 ports:
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1:~]#

The timeout= option takes its arguments as a plain number, which is

interpreted as seconds. It also recognizes three trailing characters, where s is

seconds, m is minutes, and h is hours.

So timeout=3m sets the timeout at three minutes, and 4h sets it at four hours.

Timeout mode is incompatible with the --permanent option. It would

be counterproductive to use a permanent timeout.

Chapter 10 Managing the Firewall with firewalld

285

�Wireless

Some quick experiments on my laptop systems show that, like wired

connections, the default zone is applied to wireless connections

unless they are assigned to a specific zone. Since many of the wireless

connections we use out in public are completely unprotected, I strongly

recommend assigning the drop zone which just ignores all incoming

connection attempts. This does not block your outbound connections

such as web pages, email, VPN, or others.

Even those public networks that have some level of encryption are

usually quite easy to crack into. Many crackers even use their own devices

to spoof the public network so that users will log in to the cracker’s network

device instead. Once logged in, your computer is completely vulnerable

unless you have a decent firewall applied to your wireless interface.

In the next experiment, we’ll see the complete process of migrating

one of my laptops from iptables to firewalld and assigning the wireless

interface to the drop zone.

Tip  If you don’t have a laptop that’s running Linux, you still may
be able to do this experiment. There are a number of USB wireless
adapters available for under $20. To perform this experiment on your
VM, you can insert the USB wireless adapter into the physical host
and then connect the adapter to the VM. This will work exactly like it
does on a physical laptop.

Chapter 10 Managing the Firewall with firewalld

286

EXPERIMENT 10-8: ASSIGNING THE WIRELESS INTERFACE
TO THE DROP ZONE

First, check the name of the wireless interface. On my laptop, it is wlp113s0.

All wireless interface names start with the letter “w.”

[root@voyager zones]# nmcli
enp111s0: connected to Wired connection 1
 "Realtek RTL8111/8168/8411"
<SNIP>
wlp113s0: connected to LinuxBoy2
 "Intel 8265 / 8275"
 wifi (iwlwifi), 34:E1:2D:DD:BE:27, hw, mtu 1500
 inet4 192.168.25.199/24
 route4 192.168.25.0/24 metric 600
 route4 default via 192.168.25.1 metric 600
 inet6 fe80::44e5:e270:634d:eb20/64
 route6 fe80::/64 metric 1024
<SNIP>

View the configuration of the drop zone. All packets are sent directly to the

DROP target. This means that they are ignored and no response of any kind is

sent back to the originating host.

[root@voyager zones]# firewall-cmd --info-zone=drop
drop
 target: DROP
 icmp-block-inversion: no
 interfaces:
 sources:
 services:
 ports:
 protocols:

Chapter 10 Managing the Firewall with firewalld

287

 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
[root@testvm1:~]#

The drop zone is safer than using the block zone which blocks the packets

but sends a rejection back to the source. That tells the cracker that there is a

responsive computer on that IP address so they may keep attacking, looking

for an exploitable vulnerability.

Now we can disable iptables and enable firewalld. I needed to do this to make

the conversion, but you won’t need to if your host is already running firewalld.

[root@voyager ~]# systemctl disable --now iptables
Removed "/etc/systemd/system/multi-user.target.wants/
iptables.service".
[root@voyager ~]# systemctl enable --now firewalld.service
Created symlink /etc/systemd/system/dbus-org.fedoraproject.
FirewallD1.service → /usr/lib/systemd/system/firewalld.
service.
Created symlink /etc/systemd/system/multi-user.target.wants/
firewalld.service → /usr/lib/systemd/system/firewalld.
service.

Now that firewalld is running, whether it was to begin with or you had to

switch to it as I did, verify the default zone. It is public for both wired and

wireless interfaces, which is what should be expected.

[root@voyager zones]# firewall-cmd --get-active-zones
public
 interfaces: enp111s0 wlp113s0

Chapter 10 Managing the Firewall with firewalld

288

Now we change the wireless interface and add it to the drop zone.

[root@voyager zones]# firewall-cmd --change-
interface=wlp113s0 --zone=drop --permanent
The interface is under control of NetworkManager, setting
zone to 'drop'.
success
[root@voyager zones]# firewall-cmd --get-zone-of-
interface=wlp113s0
drop
[root@voyager zones]# firewall-cmd --get-active-zones
public
 interfaces: enp111s0
drop
 interfaces: wlp113s0

Setting the zone for the wireless interface works even if the interface is not

currently connected to a wireless network.

�Using --reload
The experiments I have performed on my VMs and my own physical

systems in preparation for writing this chapter have taught me a couple

things about managing with firewalld. I have seen a lot of misinformation

about using the --reload sub-command, most of which indicates that

it should be performed more frequently than I have found to be truly

necessary.

The times I have found it necessary to use firewall-cmd --reload are

twofold. First, do it immediately after creating a new zone whether using

the easy command-line technique you did in Experiment 10-3 or when

creating a new zone file using an editor or copying a zone file from another

Chapter 10 Managing the Firewall with firewalld

289

host. The second instance is when first starting the firewalld.service after

migrating from iptables or another firewall tool. Start firewalld.service and

then run firewall-cmd --reload.

There may be other times when it is necessary, but I have not

definitively identified them yet.

�Zone Files
It’s time to look at the zone configuration files in more detail. The default

zone file is public.xml, and it is located in the /etc/firewalld/zones

directory. Other zone files may be there also.

All the predefined default zone files are located in the /usr/lib/

firewalld/zones directory. These files are never changed. If you were to

reset firewalld to its defaults, the files in the /usr/lib/firewalld/zones

directory are used to restore the firewall to that condition. The /etc/

firewalld/zones/ directory contains a file called public.xml.old which is a

backup created automatically when the zone configuration is changed.

These files are ASCII text files using the XML format for the data,

but it is not necessary to be an XML expert to understand their content.

XML stands for Extensible Markup Language. It is a markup language for

documents using a format that is both human- and machine-readable.

Let’s look at a couple zone files and see how they are constructed.

EXPERIMENT 10-9: ZONE CONFIGURATION FILES

Because it is the most commonly used, we will start by examining the default

public zone file. It contains enough information for us to understand.

Make /etc/firewall/zone the PWD. Then examine the public.xml file.

[root@testvm1 zones]# cat public.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>

Chapter 10 Managing the Firewall with firewalld

290

 <short>Public</short>
 �<description>For use in public areas. You do not trust the
other computers on networks to not harm your computer. Only
selected incoming connections are accepted.</description>

 <service name="ssh"/>
 <service name="mdns"/>
 <service name="dhcpv6-client"/>
 <forward/>
</zone>
[root@testvm1 zones]#

The first line specifies the version of XML used by the file and the language

encoding. The second line, <zone>, identifies the beginning of a zone file.

There is a closing line at the end of the file, </zone>. All other statements are

enclosed by these two statements.

The short name is the one displayed when you use commands that show the

zone names.

[root@testvm1 zones]# firewall-cmd --get-zones
FedoraServer FedoraWorkstation block corp dmz drop external
home internal nm-shared public trusted work

The description field is a place to store a longer description of the zone. I

have not found a command that displays the description. It appears to be only

visible when you edit or cat the file.

The next three lines list the services that are allowed to connect to this host,

in this case, ssh, mdns, and dhcpv6-client. This seems to be a common set

of services in the home, internal, public, and work zone files. The home and

internal zones have an additional service.

[root@testvm1 zones]# cat internal.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>

Chapter 10 Managing the Firewall with firewalld

291

 <short>Internal</short>
 �<description>For use on internal networks. You mostly
trust the other computers on the networks to not harm
your computer. Only selected incoming connections are
accepted.</description>

 <service name="ssh"/>
 <service name="mdns"/>
 <service name="samba-client"/>
 <service name="dhcpv6-client"/>
 <forward/>
</zone>

The samba client is an open source version of the Microsoft SMB (Server

Message Block) protocol and allows Linux hosts and other hosts and devices

to participate on Windows networks.

The forward statement in these zones allows TCP/IP packets entering the host

on the interface assigned to this zone to be forwarded to other interfaces on

the same host computer.

The external zone has an interesting statement.

[root@testvm1 zones]# cat external.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>External</short>
 �<description>For use on external networks. You do not
trust the other computers on networks to not harm
your computer. Only selected incoming connections are
accepted.</description>

 <service name="ssh"/>
 <masquerade/>
 <forward/>
</zone>

Chapter 10 Managing the Firewall with firewalld

292

The masquerade entry is typically used only on the firewall and is for packets

that are outbound to the external network—usually the Internet. That entry

causes the firewall to change the source IP address of the outbound packet

from that of the originating computer on the internal network to that of the

firewall computer. The firewall keeps track of the packets using connection

IDs. Any inbound packets addressed to the firewall computer with that

connection ID will be sent to the computer in your network that originated

the request. Thus, a request from a computer inside your network to www.
example.com on port 80 to retrieve a web page will contain a connection

ID. When the packets returned from that website contain that ID, they are sent

to the computer in your network that originated the request.

Masquerading is common, and it allows computers inside a network

to communicate to the outside world through the firewall. The external

computers cannot identify the specific computer inside your network because

its IP address is not contained in the data packet—only the IP address of the

firewall computer is.

Remember that the zone files provided with firewalld are intended as

basic sets of rules that can be modified as required to meet your needs. As

I have already mentioned, you should leave the existing zone files intact

and create new ones based on the existing one that most closely meets

your needs.

�Minimum Usable Firewall Configuration

While writing this chapter, I have experimented with various aspects of

firewalld in my own environment. One of the issues I was exploring was

the question, “What is the minimum set of firewall rules needed on a

workstation?” Put another way, “How secure can I make the computers on

my network and yet keep them talking to each other?”

Chapter 10 Managing the Firewall with firewalld

http://www.example.com
http://www.example.com

293

I have a fairly simple setup. All of my workstations use DHCP to obtain

their network configuration from my one server. That server also provides

name services, email, NTP, and multiple websites. I also have a host that

serves only as a firewall and router. My primary workstation is also my

Ansible hub. All of my administrative interactions with various hosts on my

network are handled using SSH, and Ansible uses SSH and nothing else.

So all of my workstations and the server need only SSH for me to

manage my network and its hosts.

The server needs incoming SMTP, IMAP, NTP, HTTP, and DNS from

the internal network. It also needs SMTP, IMAP, and HTTP from the

outside Internet. The firewall uses port forwarding to direct email and web

requests from the Internet to the server.

It’s not especially complex. Aside from email and the websites on

the server and firewall, the only service that is needed on my network is

SSH. I do however have one other inbound port open on all of the hosts

on my internal network. I won’t tell you what it is, but I use it on my

primary workstation to remotely manage an application that runs on all of

my hosts.

�Panic Mode
We now have a well-protected host that is located inside a well-protected

network. But vulnerabilities can still be exploited into a full-blown breach

by the crackers.

What do you do then?

firewalld has a panic mode that you can set. It blocks all inbound and

outbound packets, effectively creating a logical isolation of the host. The

caveat is that you must have some level of physical or direct access to the

host in order to turn panic mode off. Panic mode is not persistent so does

not survive a reboot—so if all else fails…

Chapter 10 Managing the Firewall with firewalld

294

EXPERIMENT 10-10: PANIC MODE

Panic mode is easy to activate. If you activate it remotely, you get no response

and the terminal will freeze. You will need direct access to the host, physical or

virtual, to deactivate panic mode.

Perform this experiment from the testvm1 command line in a terminal on the

desktop. First, turn panic mode on.

[root@testvm1:~]# firewall-cmd --panic-on
success

Ping a remote host to verify that you cannot access the outside world. After a

short wait, exit from the ping using Ctrl+C.

[root@testvm1:~]# ping -c3 example.com
^C
PING 10.0.2.1 (10.0.2.1) 56(84) bytes of data.
^C
--- 10.0.2.1 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss,
time 2120ms
[root@testvm1:~]# firewall-cmd --panic-off
success
[root@testvm1:~]# ping -c3 example.com
PING example.com (93.184.216.34) 56(84) bytes of data.
64 bytes from 93.184.216.34 (93.184.216.34): icmp_seq=1
ttl=50 time=13.7 ms
64 bytes from 93.184.216.34 (93.184.216.34): icmp_seq=2
ttl=50 time=13.6 ms
64 bytes from 93.184.216.34 (93.184.216.34): icmp_seq=3
ttl=50 time=13.7 ms

Chapter 10 Managing the Firewall with firewalld

295

--- example.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss,
time 2012ms
rtt min/avg/max/mdev = 13.642/13.711/13.748/0.049 ms
[root@testvm1:~]#

When panic mode is on, no communication is allowed, either in or out.

Like other firewalld settings, panic mode can be turned on for a

specified period of time. Normal access using your configured firewall

zones will resume at the expiration of the timer. However, I recommend

against doing so as it’s not possible to predict how long it will take to

correct the problem that caused us to set panic mode in the first place.

�firewall-config GUI
In addition to the command-line tools, firewalld has a well-designed

and useful GUI interface. Like many GUI tools, it may not be available on

the hosts you will need to administer such as servers and hosts used as

firewalls. When it is available, however, it can make firewalld management

at least a little easier. We still need to understand what is really happening

behind the scenes, and that’s why we spend so much time on command-

line tools—that and the fact that they will always be available even when

the GUI ones are not.

�nftables
The nftables rules and the nftables.service, along with the nft command-

line tool, are a complete firewall solution. However, when using firewalld,

the nftables service is disabled.

Chapter 10 Managing the Firewall with firewalld

296

The zone files we use to define the firewall characteristics for network

interfaces are used, along with the other configuration files in /etc/

firewalld, to create rule sets using the nftables file formats. firewalld is used

to create nftables rules that are used by the appropriate kernel modules to

examine every network packet and determine their final disposition.

You can view all of the current nftables rules, but even though they are

human-readable, they are not very understandable.

EXPERIMENT 10-11: VIEWING THE NFTABLES RULES

This command displays all of the nftables rules for the currently active zones.

[root@testvm1:~]# nft list ruleset | less
table inet firewalld {
 chain mangle_PREROUTING {
 �type filter hook prerouting priority mangle

+ 10; policy accept;
 jump mangle_PREROUTING_ZONES
 }
 chain mangle_PREROUTING_POLICIES_pre {
 jump mangle_PRE_policy_allow-host-ipv6
 }
 chain mangle_PREROUTING_ZONES {
 iifname "enp0s8" goto mangle_PRE_public
 iifname "enp0s3" goto mangle_PRE_dmz
 goto mangle_PRE_public
 }
<SNIP>

Search on the strings “dmz” to locate the rules pertaining to that zone. You can

also search on network interface names like enp0s3.

Chapter 10 Managing the Firewall with firewalld

297

These rules cannot be accessed and changed directly. You must use

one of the command-line tools, firewall-cmd for firewalld or nft for

nftables, to manipulate the firewall as an entity. I find it easier to use

firewall-cmd, and the strategies and logical structure of firewalls created

by firewalld are much easier to understand than nftables.

�Outbound Blocking
I mentioned at the beginning of this chapter that outbound network traffic

from a given host is not blocked so as to ensure that we as users can access

external websites, send email, use SSH to communicate with remote

hosts on our own network as well as those that are even more remote, and

more. However, there is a use case in which outbound blocking can be

appropriate.

In the event that a host becomes infected with certain types of

malware, this may be an effective tool to prevent other hosts from being

infected. Malware which sends spam email, or which can propagate

itself to other computers, or which can participate in coordinated denial

of service (DOS) attacks, is a major problem—although primarily on

Windows hosts. For example, a firewall can be configured such that the

only email allowed to pass through to the Internet can only originate

from a known and trusted internal email server. Thus, direct spamming is

thwarted.

The most secure networks are also those that prevent internal

problems from escaping to the outside world and the internal network

as well.

Chapter 10 Managing the Firewall with firewalld

298

�Fail2Ban
A great firewall is one that can adapt as the threats change. I needed

something like this to stem the large number of attacks via SSH I had

been experiencing a few years ago. After a good bit of exploring and

research, I found fail2ban, open source software which automates what I

was previously doing by hand and adds repeat offenders to a blocklist in

firewalls. The best part is that it integrates nicely with both iptables and

firewalld.

Fail2Ban has an extensive series of configurable matching rules and

separate actions that can be taken when attempts are made to crack into

a system. It has rules for many types of attacks that include web, email,

and many other services that might have vulnerabilities. Fail2Ban works

by detecting attacks and then adding a rule to the firewall that will block

further attempts from that specific, single IP address for a specified and

configurable amount of time. After the time has expired, it removes the

blocking rule.

Let’s install Fail2Ban and see how it works.

EXPERIMENT 10-12: FAIL2BAN

Perform this experiment as the root user. First, install Fail2Ban. This only takes

a minute or so and does not require a reboot. The installation includes the

firewalld interface to Fail2Ban.

[root@testvm1:~]# dnf -y install fail2ban

We need to perform a bit of configuration before enabling Fail2Ban. Make /

etc/fail2ban the PWD and list the files there. The jail.conf file is the main

configuration file, but it is not used for most configuration because it might

get overwritten during an update. We will create a jail.local file in the same

directory. Any settings defined in jail.local will override ones set in jail.conf.

Chapter 10 Managing the Firewall with firewalld

299

Copy jail.conf to jail.local. Edit the jail.local file and ignore the comment near

the beginning that tells you not to modify this file. It is, after all, the file we will

be modifying.

Find the line # ignoreself = true which should be line 87. Remove the

comment hash, and change it to ignoreself = false. We do this so that

Fail2Ban will not ignore failed login attempts from the localhost. It can and

should be changed back to true after finishing this chapter.

Scroll down to the line bantime = 10m (line 101) and change that to 1

minute (1m). Since we have no other hosts to test from, we will test using the

localhost. We do not want the localhost banned for long so that we can resume

experiments quickly. In the real world, I would set this to several hours so that

the crackers cannot get more attempts for a long time.

Change maxretry = 5 to 2. This is the maximum number of retries allowed

after any type of failed attempt. Two retries is a good number for experimental

purposes. I normally set this to three because anyone failing three retries to

get into my systems using SSH does not belong there.

We could also change both of these configuration options in the [sshd] filter

section which would limit them to sshd, while the global settings we just

changed apply to all filters.

Read the comments for the other miscellaneous options in this section of the

file, then scroll down to the [sshd] section in JAILS.

Add the highlighted line that enables the sshd jail, enabled = true. The

documentation is not clear about needing to add this line. In previous versions,

the line was enabled = false, so it was clear that changing false to true would

enable the sshd jail.

[sshd]
To use more aggressive sshd modes set filter parameter
"mode" in jail.local:
normal (default), ddos, extra or aggressive (combines all).

Chapter 10 Managing the Firewall with firewalld

300

See "tests/files/logs/sshd" or "filter.d/sshd.conf" for
usage example and details.
enabled = true
#mode = normal
port = ssh
logpath = %(sshd_log)s
backend = %(sshd_backend)s

Do not enable fail2ban, but start it.

[root@testvm1:~]# systemctl start fail2ban.service

Now ssh to localhost and log in using a bad user account or password on a

good user account. It takes three failed password entries. After the second

failed login attempts, the connection is locked, and after a timeout, an error

message is displayed.

dboth@testvm1:~$ ssh user@localhost
user@localhost's password:
Permission denied, please try again.
user@localhost's password:
Connection closed by 127.0.0.1 port 22

This means that the sshd jail is working.

Whether you use firewalld or iptables for your firewall front end, you can list

the nftables rules and page to the bottom to find the following entries which

were added by Fail2Ban:

[root@testvm1:~]# nft list ruleset | less
table ip6 filter {
 chain INPUT {
 �type filter hook input priority filter;

policy accept;
 �meta l4proto tcp tcp dport 22 counter

packets 68 bytes 11059 jump f2b-sshd

Chapter 10 Managing the Firewall with firewalld

301

 }
 chain f2b-sshd {
 �ip6 saddr ::1 counter packets 4 bytes

320 reject
 �counter packets 54 bytes 9939 return
 }
}
table ip filter {
 chain INPUT {
 �type filter hook input priority filter;

policy accept;
 �meta l4proto tcp tcp dport 22 counter

packets 62 bytes 9339 jump f2b-sshd
 }

 chain f2b-sshd {
 �ip saddr 127.0.0.1 counter packets 2 bytes

120 reject
 counter packets 54 bytes 8859 return
 }
}

Now look at a couple log files. In /var/log, first look at /var/log/secure. You

should see a number of entries indicating failed passwords. These are the log

entries checked by Fail2Ban for failures.

Look at the /var/log/fail2ban.log file. This log file shows the times that

triggering entries were found in the secure log and the ban and unban actions

taken to protect the system.

Be aware that the f2b-sshd chain entries do not appear in the iptables rule set

until the first time a ban is triggered. Once there, the first and last lines of the

chain are not deleted, but the lines rejecting specific IP addresses are removed

as they time out. It took me a bit of work to figure out this bit.

Chapter 10 Managing the Firewall with firewalld

302

The installation of Fail2Ban installs the configuration files needed for

logwatch to report on Fail2Ban activity. It is possible to create your own

filters and actions for Fail2Ban, but that is beyond the scope of this course.

Be sure to look at the various jails in the fail2ban.local file. There are

many different events that can trigger fail2ban to ban source IP addresses

from access to a particular port or service.

�Cleanup
We need to do just a bit of cleanup before we continue.

Find the line ignoreself = false which should be line 87. This is the line

we changed in Experiment 10-12. Remove the comment hash, and change

it to # ignoreself = true. We do this so that Fail2Ban will again ignore failed

login attempts from the localhost.

Scroll down to the line bantime = 1m (line 101) and change that to 10

minutes (10m).

Change maxretry = 2 back to 5.

Finally, stop Fail2Ban. We didn’t enable it, so it won’t start on the next

boot in any event.

�Summary
Security is a big part of our job as SysAdmins, and firewalls are a major

tool in keeping our networks safe. While Linux is quite secure as initially

installed, any device connected to a wired or wireless network is always

a target for crackers. A good firewall in the edge of your network where

it interfaces with the Internet is a good first step in ensuring that your

network is hardened. However, without appropriately configured firewalls

present on every host in the network, a cracker who breaches the firewall

host also gains immediate access to every host on your network.

Chapter 10 Managing the Firewall with firewalld

303

The best approach to setting up any firewall is to start by blocking

everything. Only then should you start considering the specific services

that should be allowed to access your network. firewalld does an excellent

job as the default firewall using the public zone because it blocks almost

everything. Like I did, you should experiment to see whether an even more

restrictive zone configuration might provide all of the access needed into

your hosts and network while making them even more secure.

I do recommend that you not change the preinstalled zone files. I

suggest that you do what I do and copy the existing zone file that most

closely meets your needs and modify it as necessary. firewalld provides

some basic yet very secure zone files to start. You may find that one of

those is perfect for your needs on some or all of your hosts.

We explored zones as a concept and the reality of how they work and

how they can be adapted to better meet your needs. This was done in

the context of a workstation rather than a server or designated firewall to

protect your entire network.

�Exercises
Perform the following exercise to complete this chapter.

This is a single exercise to add a new zone to your firewall. The list

below describes the functions required of the zone and some specific

instructions and requirements you need to follow to successfully complete

this task:

	 1.	 Copy an existing zone file to create a new one. Don’t

use the firewall-cmd --new-zone command. Name

the new zone “telnet”.

	 2.	 Configure the new zone to block all external access

except for SSH and Telnet.

Chapter 10 Managing the Firewall with firewalld

304

	 3.	 Forwarding and masquerading are not required.

	 4.	 Do not make this new zone the default. Your default

zone should be the public zone. If not, make it so.

	 5.	 Explicitly assign the enp0s3 interface to the

new zone.

	 6.	 Test the new zone to ensure that both SSH and

Telnet are listening and accepting connections in

this zone.

	 7.	 For cleanup, exit from all Telnet and SSH

connections and disable telnet.

	 8.	 Remove the zone from the network interface and

ensure that it has reverted to the public zone default.

Chapter 10 Managing the Firewall with firewalld

305© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_11

CHAPTER 11

Resource
Management
with cgroups

�Objectives
In this chapter, you will learn

•	 What cgroups are

•	 Why cgroups are used for resource management

•	 How to use cgroups to view and understand how Linux

manages groups of related processes

•	 How to use systemd cgroups for resource management

�Introduction
There is little more frustrating to me as a SysAdmin than unexpectedly

running out of some computing resource. On more than one occasion,

I have filled all available disk space in a partition, run out of RAM, and

not had enough CPU time to perform the tasks at hand in the necessary

period of time. Resource management is one of the most important tasks

performed by SysAdmins.

https://doi.org/10.1007/979-8-8688-1328-3_11#DOI

306

The point of resource management is to ensure that all processes

have relatively equal access to the system resources they need. Resource

management also involves ensuring that RAM, hard drive space, and CPU

capacity are added when necessary or rationed when that is not possible.

Users who hog system resources, whether intentionally or accidentally,

should also be prevented from doing so.

We have tools that enable us to monitor and manage various system

resources. Tools such as top and many similar tools allow us to monitor

the use of memory, I/O, storage (disk, SSD, etc.), network, swap space,

CPU usage, and more. These tools, particularly those that are CPU-centric,

are mostly based on the paradigm that the running process is the unit

of control. At best they provide a way to adjust the nice number—and

through that the priority—or to kill a running process.

Other tools based on traditional resource management in a SystemV

environment are managed by the /etc/security/limits.conf file and

the local configuration files located in /etc/security/limits.d directory.

Resources can be limited in a fairly crude but useful manner by user or

group. Resources that can be managed include various aspects of RAM,

total CPU time per day, total amount of data, priority, nice number,

number of concurrent logins, number of processes, maximum file size,

and more.

�Using cgroups for Process Management
One major difference between systemd and SystemV is the way in which

they handle processes. SystemV treats each process as an entity unto itself.

systemd collects related processes into control groups called cgroups

and manages system resources for the cgroup as a whole. This means

that resources can be managed per application rather than the individual

processes that make up an application.

Chapter 11 Resource Management with cgroups

307

The control units for cgroups are slice units. Slices are a

conceptualization that allows systemd to order processes in a tree format

for ease of management. I found the description below in an article1 by

Steve Ovens of Red Hat that provides an excellent example of how cgroups

are used by the system itself:

As you may or may not know, the Linux kernel is responsible
for all of the hardware interacting reliably on a system. That
means, aside from just the bits of code (drivers) that enable the
operating system (OS) to understand the hardware, it also sets
limits on how many resources a particular program can
demand from the system. This is most easily understood when
talking about the amount of memory (RAM) a system has to
divide up amongst all of the applications your computer may
execute. In its most basic form, a Linux system is allowed to
run most applications without restriction. This can be great
for general computing if all applications play nicely together.
But what happens if there is a bug in a program, and it starts
to consume all of the available memory? The kernel has a
facility called the Out Of Memory (OOM) Killer. Its job is to
halt applications in order to free up enough RAM so that the
OS may continue to function without crashing.

That's great, you say, but what does this have to do with
cgroups? Well, the OOM process acts as a last line of defense
before your system comes crashing down around you. It's use-
ful to a point, but since the kernel can control which processes
must survive the OOM, it can also determine which applica-
tions cannot consume too much RAM in the first place.

1 Ovens, Steve, “A Linux SysAdmin’s introduction to cgroups,” Enable SysAdmin,
2020, https://www.redhat.com/sysadmin/cgroups-part-one

Chapter 11 Resource Management with cgroups

https://www.redhat.com/sysadmin/cgroups-part-one

308

Cgroups are, therefore, a facility built into the kernel that
allow the administrator to set resource utilization limits on
any process on the system. In general, cgroups control:

•	 The number of CPU shares per process.

•	 The limits on memory per process.

•	 Block Device I/O per process.

•	 Which network packets are identified as the same

type so that another application can enforce network

traffic rules.

There are more facets than just these, but those are the major
categories that most administrators care about.

EXPERIMENT 11-1: VIEWING CGROUPS

Let’s start with some commands that allow us to view various types of

information about cgroups. The systemctl status <service> command displays

slice information about a specified service including its slice. This example

shows the at daemon.

[root@studentvm1 ~]# systemctl status atd.service
• atd.service - Deferred execution scheduler
Loaded: loaded (/usr/lib/systemd/system/atd.service;
enabled; preset: enabled)
Drop-In: /usr/lib/systemd/system/service.d
└─10-timeout-abort.conf, 50-keep-warm.conf
Active: active (running) since Wed 2025-01-15 13:45:11 EST;
3 days ago
Invocation: 06c10af0a7054e62ba04d3aeb04c7ec4
Docs: man:atd(8)

Chapter 11 Resource Management with cgroups

309

Main PID: 1245 (atd)
Tasks: 1 (limit: 9472)
Memory: 336K (peak: 1020K)
CPU: 19ms
CGroup: /system.slice/atd.service
└─1245 /usr/sbin/atd -f

Jan 15 13:45:11 testvm1.both.org systemd[1]: Started atd.
service - Deferred execution scheduler.
Jan 15 13:45:11 testvm1.both.org (atd)[1245]: atd.service:
Referenced but unset environment vari

This is an excellent example of one reason that I find systemd more useful

than SystemV and the old init program; there is so much more information

here that SystemV was able to provide. The cgroup entry includes the

hierarchical structure where the system.slice is systemd (PID 1) and the atd.

service is one level below and is part of the system.slice. The second line of

the cgroup entry also shows the process ID (PID) and the command used to

start the daemon.

The systemctl command allows us to see multiple cgroup entries. The --all

option shows all slices including those that are not currently active.

[root@studentvm1 ~]# systemctl -t slice --all

UNIT LOAD ACTIVE
 SUB DESCRIPTION
-.slice loaded active
 active Root Slice
system-cups.slice loaded active
 active CUPS Slice
system-getty.slice loaded active
 active Slice /system/getty

Chapter 11 Resource Management with cgroups

310

system-modprobe.slice loaded
 active active Slice /system/modprobe
system-sshd\x2dkeygen.slice loaded
 active active Slice /system/sshd-keygen
system-systemd\x2dfsck.slice loaded
 active active Slice /system/systemd-fsck
system-systemd\x2dzram\x2dsetup.slice loaded
 active active Slice /system/systemd-zram-setup
system-telnet.slice loaded
 active active Slice /system/telnet
system.slice loaded
 active active System Slice
user-0.slice loaded
 active active User Slice of UID 0
user-1000.slice loaded
 active active User Slice of UID 1000
user-983.slice loaded
 active active User Slice of UID 983
user.slice loaded
 active active User and Session Slice

Legend: LOAD → Reflects whether the unit definition
was properly loaded.
ACTIVE → The high-level unit activation state, i.e.
generalization of SUB.
SUB → The low-level unit activation state, values
depend on unit type.

13 loaded units listed.
To show all installed unit files use 'systemctl list-
unit-files'.

Chapter 11 Resource Management with cgroups

311

The first thing to notice about the above data is that it shows user slices for

UIDs 0 (root) and 1000, which is my user login. This shows only the slices

and not the services that are a part of each slice. So it becomes obvious

from this data that a slice is created for each user at the time they log in.

This can provide a means to manage all of the tasks for that user as a single

cgroup entity.

�Exploring the Cgroup Hierarchy
All well and good so far, but cgroups are hierarchical, and all of the service

units run as members of one of these cgroups. Viewing that hierarchy is

easy and uses one old command and one new one that is part of systemd.

EXPERIMENT 11-2: CGROUPS

The ps command can be used to map the processes and their locations in the

cgroup hierarchy. Note that it is necessary to specify the desired data columns

when using the ps command. I have significantly reduced the volume of

output from this command but have tried to leave enough so that you can get

a feel for what you might find on your own systems.

[root@studentvm1 ~]# ps xawf -eo pid,user,cgroup,args
 PID USER CGROUP COMMAND
 2 root - [kthreadd]
 3 root - _ [rcu_gp]
 4 root - _ [rcu_par_gp]
 5 root - �_ [slub_

flushwq]
<SNIP>

Chapter 11 Resource Management with cgroups

312

 �1154 root 0::/system.slice/gssproxy.s /usr/sbin/
gssproxy -D

 �1175 root 0::/system.slice/sshd.servi sshd: /usr/
sbin/sshd -D [listener] 0 of<snip>

 �1442 root 0::/user.slice/user-0.slice �_ sshd:
root [priv]

 �1454 root 0::/user.slice/user-0.slice | �_ sshd:
root@pts/0

 �1455 root 0::/user.slice/user-0.slice |
_ -bash

 �1489 root 0::/user.slice/user-0.slice |
 _ screen

 �1490 root 0::/user.slice/user-0.slice |
 _ SCREEN

 �1494 root 0::/user.slice/user-0.slice |
 _ /bin/bash

 �4097 root 0::/user.slice/user-0.slice |
 | _ ps xawf -eo pid,<snip>

 �4098 root 0::/user.slice/user-0.slice |
 | _ less

 �2359 root 0::/user.slice/user-0.slice |
 _ /bin/bash

 �2454 root 0::/user.slice/user-0.slice
 _ sshd: root [priv]

 �2456 root 0::/user.slice/user-0.slice
 | _ sshd: root@pts/3

 �2457 root 0::/user.slice/user-0.slice
 | _ -bash

 �3014 root 0::/user.slice/user-1000.sl
 _ sshd: student [priv]

 �3027 student 0::/user.slice/user-1000.sl
 _ sshd: student@pts/4

Chapter 11 Resource Management with cgroups

313

 �3028 student 0::/user.slice/user-1000.sl
 _ -bash

 �1195 colord 0::/system.slice/colord.ser /usr/
libexec/colord

<SNIP>

We can view the entire hierarchy with the systemd-cgls command which is

a bit simpler because it requires no complex options.

I have shortened this tree view considerably, too. This was done on

StudentVM1 and is about 230 lines long; the amount of data from my primary

workstation is about 400 lines.

[root@studentvm1 ~]# systemd-cgls
Control group /:
-.slice
├─user.slice (#1323)
│ → user.invocation_id: 05085df18c6244679e0a8e31a9d7d6ce
│ → trusted.invocation_id: 05085df18c6244679e0a8e31a9d7d6ce
│ ├─user-0.slice (#6141)
│ │ → user.invocation_id: 6535078b3c70486496ccbca02a735139
│ │ → trusted.invocation_id: 6535078b3c70486496ccbca02a735139
│ │ ├─session-2.scope (#6421)
│ │ │ → �user.invocation_id: 4ce76f4810e04e2fa2f166971

241030c
│ │ │ → �trusted.invocation_id: 4ce76f4810e04e2fa2f

166971241030c
│ │ │ ├─1442 sshd: root [priv]
│ │ │ ├─1454 sshd: root@pts/0
│ │ │ ├─1455 -bash
│ │ │ ├─1489 screen
│ │ │ ├─1490 SCREEN
│ │ │ ├─1494 /bin/bash

Chapter 11 Resource Management with cgroups

314

│ │ │ ├─2359 /bin/bash
│ │ │ ├─4119 systemd-cgls
│ │ │ └─4120 less
<SNIP>
│ └─user-1000.slice (#10941)
│ → user.invocation_id: 2b5f1a03abfc4afca295e003494b73b2
│ → �trusted.invocation_id: 2b5f1a03abfc4afca295e0034

94b73b2
│ ├─user@1000.service … (#11021)
│ │ → user.delegate: 1
│ │ → trusted.delegate: 1
│ │ → �user.invocation_id: cfd09d6c3cd641d898ddc23e22

916195
│ │ → �trusted.invocation_id: cfd09d6c3cd641d898ddc23e229

16195
│ │ └─init.scope (#11061)
│ │ ├─3017 /usr/lib/systemd/systemd --user
│ │ └─3019 (sd-pam)
│ └─session-5.scope (#11221)
│ → �user.invocation_id: a8749076931f425d851c59fd

956c4652
│ → �trusted.invocation_id: a8749076931f425d851c59fd

956c4652
│ ├─3014 sshd: student [priv]
│ ├─3027 sshd: student@pts/4
<SNIP>
│ ├─session-7.scope (#14461)
│ │ → �user.invocation_id: f3e31059e0904df08d6b44856

aac639b
│ │ → �trusted.invocation_id: f3e31059e0904df08d6b44856

aac639b

Chapter 11 Resource Management with cgroups

315

│ │ ├─1429 lightdm --session-child 13 20
│ │ �├─4133 /usr/bin/gnome-keyring-daemon --daemonize

--login
│ │ ├─4136 xfce4-session
│ │ ├─4300 /usr/bin/VBoxClient --clipboard
│ │ ├─4301 /usr/bin/VBoxClient --clipboard
│ │ ├─4315 /usr/bin/VBoxClient --seamless
│ │ ├─4316 /usr/bin/VBoxClient --seamless
│ │ ├─4321 /usr/bin/VBoxClient --draganddrop
│ │ ├─4326 /usr/bin/VBoxClient --draganddrop
│ │ ├─4328 /usr/bin/VBoxClient --vmsvga-session
│ │ ├─4329 /usr/bin/VBoxClient --vmsvga-session
│ │ �├─4340 /usr/bin/ssh-agent /bin/sh -c exec -l /bin/

bash -c "startxfce4"
│ │ ├─4395 /usr/bin/gpg-agent --sh --daemon
│ │ �├─4396 xfwm4 --display :0.0 --sm-client-id

2e79712f7-299e-4c6f-a503-2f64940ab467
│ │ �├─4409 xfsettingsd --display :0.0 --sm-client-id

288d2bcfd-3264-4caf-ac93-2bf552b14688
│ │ �├─4412 xfce4-panel --display :0.0 --sm-client-id

2f57b404c-e176-4440-9830-4472e6757db0
│ │ �├─4416 Thunar --sm-client-id 21b424243-7aed-4e9e-

9fc5-c3b1421df3fa –daemon
<SNIP>

This tree view shows all of the user and system slices and the services and

programs running in each cgroup. Notice that within the user-1000.slice in the

listing above, the units called “scope” which group related programs together

into a manageable unit. The user-1000.slice/session-7.scope cgroup contains

the GUI desktop program hierarchy starting with the LXDM display manager

session and all of its subtasks including things like Bash shell and the Thunar

GUI file manager.

Chapter 11 Resource Management with cgroups

316

Scope units are not defined in configuration files but are generated

programmatically as the result of starting groups of one or more related

programs. Scope units do not create or start the processes running as part of

that cgroup. All processes within the scope are equal, and there is no internal

hierarchy. The life of a scope begins when the first process is created and

ends when the last process is destroyed.

Open several windows on your desktop such as terminal emulators,

LibreOffice, or whatever you want, then switch to an available virtual console

and start something like top or midnight commander. Run the systemd-
cgls command on your host and take note of the overall hierarchy and the

scope units.

The systemd-cgls command provides the most complete

representation of the cgroup hierarchy and details of the units that

make it up of any other command that I have found. I prefer its cleaner

representation of the tree than that provided by the ps command.

�Managing cgroups with systemd
I thought about writing this section myself but found a series of four

articles by Steve Ovens on Red Hat’s Enable SysAdmin website. I have

found this information helpful in what I have written already, but since

it covers the subject so well and goes beyond the scope of this course, I

decided to list the articles here and let you read them for yourself:

	 1.	 “A Linux SysAdmin’s introduction to cgroups”2

2 Ovens, Steve, “A Linux SysAdmin’s introduction to cgroups,” Enable SysAdmin,
2020, https://www.redhat.com/sysadmin/cgroups-part-one

Chapter 11 Resource Management with cgroups

https://www.redhat.com/sysadmin/cgroups-part-one

317

	 2.	 “How to manage cgroups with CPUShares”3

	 3.	 “Managing cgroups the hard way-manually”4

	 4.	 “Managing cgroups with systemd”5

Although some SysAdmins may need to manage system resources

using cgroups, many will not. It may be worth noting here that containers

are dependent on cgroups, so with the ubiquity of container platforms like

Kubernetes and Podman and Docker, cgroups have become more relevant

than ever. If you do, the best way to get started is with the series of articles

listed above.

�Summary
This chapter introduced cgroups and looked at their use as tools to help

manage system resources such as RAM and CPU. We used the systemctl

command to identify cgroups in system services. We also took a look at the

cgroup hierarchy.

Because actual resource management using cgroups is beyond the

scope of this course, I have provided links to some excellent materials by

Steve Ovens that provide enough information to get you started. In the first

article of that series, Ovens says that adoption of cgroups is very limited

because of widespread lack of knowledge of its existence.

3 Ovens, Steve, “How to manage cgroups with CPUShares,” Enable SysAdmin, 2020,
https://www.redhat.com/sysadmin/cgroups-part-two
4 Ovens, Steve, “Managing cgroups the hard way-manually,” Enable SysAdmin,
2020, https://www.redhat.com/sysadmin/cgroups-part-three
5 Ovens, Steve, “Managing cgroups with systemd,” Enable SysAdmin, 2020,
https://www.redhat.com/sysadmin/cgroups-part-four

Chapter 11 Resource Management with cgroups

https://www.redhat.com/sysadmin/cgroups-part-two
https://www.redhat.com/sysadmin/cgroups-part-three
https://www.redhat.com/sysadmin/cgroups-part-four

318

�Exercises
Complete the following exercises to finish this chapter:

	 1.	 Why are cgroups important for resource

management?

	 2.	 Why are cgroups more widely used by SysAdmins?

	 3.	 In Experiment 11-1, one slice on my VM was for

UID 983. If you have that UID or any other slice

belonging to a user, determine which user it is and

why it exists.

Chapter 11 Resource Management with cgroups

319© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_12

CHAPTER 12

Using systemd-
resolved Name
Service
�Objectives
After reading this chapter, you will be able to

•	 Describe how a name search works

•	 Use the nsswitch file to configure name services

•	 Use resolv.conf in both historical and

contemporary modes

•	 Use systemd-resolved to provide Domain Name

Services

•	 Describe the three name service strategies

•	 Identify and describe the problems with systemd-

resolved in certain use cases

•	 Revert a Linux host to use nsswitch and the traditional

NSS (Name Service Switch) resolver

https://doi.org/10.1007/979-8-8688-1328-3_12#DOI

320

�Introduction
The Domain Name Services (DNS)1 system provides the database used

in the translation of Internet locations from human-readable hostnames,

such as www.example.net, to IP addresses, like 54.204.39.132, so that

our Internet-connected computers and other devices can access them.

Without these name resolver services, it would be nearly impossible to

surf the Web as freely and easily as we do. As humans, we tend to do better

with names like opensource.org, while computers do much better with

numbers like 104.21.84.214. So we need a translation service to convert

the names that are easy for us to the IP addresses that are easy for our

computers.

Every computer needs its own resolver service so that it can locate

hosts on the local network and the Internet. But it’s complicated.

In this chapter, we’ll start with an exploration of name services and

how they work. Then we’ll look at the details of the resolver services and

how they work in modern distributions. We’ll learn about the historical

NSS resolver and the systemd-resolved resolver along with tools and

techniques for managing both.

We’ll also explore one method for optimizing name services on some

hosts by reverting to the traditional NSSwitch resolver.

�How a Name Search Works
Let's start with a simplified example of what happens when a name

request for a web page is made by a client service on your computer. For

this example, I use www.example.net as the website I want to view in my

browser. I also assume that there is a local name server on the network, as

is the case with my own network.

1 Both, David, Introduction to the Domain Name System (DNS), https://www.
both.org/?p=4759

Chapter 12 Using systemd-resolved Name Service

http://www.example.net
http://www.example.net
https://www.both.org/?p=4759
https://www.both.org/?p=4759

321

Local name resolution will vary a bit depending upon the sequence of

entries for the host line in the nsswitch.conf file. External name resolution

always works like this regardless of which local resolver is being used.

	 1.	 First, I type in the URL or select a bookmark

containing that URL. In this case, the URL is

www.example.net.

	 2.	 The browser client, whether it is Opera, Firefox,

Chrome, Min, Lynx, Links, or any other browser,

sends the request to the operating system.

	 3.	 The operating system first checks the /etc/hosts file

to see if the hostname is there. If so, the IP address

of that entry is returned to the browser. If not, we

proceed to the next step. In this case, we assume

that the name is not in /etc/hosts.

	 4.	 The hostname is then sent to the first name server

specified in /etc/resolv.conf. In this case, the IP

address of the first name server is my own internal

name server. For this example, my name server does

not have the IP address for www.example.net cached

and must look further afield. So we go on to the

next step.

	 5.	 The local name server sends the request to a remote

name server. This can be one of two destination

types, one type of which is a forwarder. A forwarder

is simply another name server such as the ones at

your ISP or a public name server such as Google at

8.8.8.8 or 8.8.4.4. The other destination type is that

of the top-level root name servers. The root servers

don't usually respond with the desired target IP

Chapter 12 Using systemd-resolved Name Service

http://www.example.net
http://www.example.net

322

address or www.example.net; they respond with

the authoritative name server for that domain. The

authoritative name servers are the only ones that

have the authority to maintain and modify the data

for a domain.

	 6.	 The local name server is configured to use the root

name servers so the root name server for the .com

top-level domain returns the IP address of the

authoritative name server for example.net. That

IP address could be for any one of the three (at the

time of this writing) name servers, ns1.redhat.com,

ns2.redhat.com, or ns3.redhat.com.

	 7.	 The local name server then sends the query to the

authoritative name server which returns the IP

address for www.example.net.

	 8.	 The browser uses the IP address for www.example.net

to send a request for a web page which is downloaded

to the browser.

One of the important side effects of this name search is that the results

are cached for a period of time by my local name server. That means that

the next time I, or anyone on my network, want to access example.net, the

IP address is probably already stored in the local cache which prevents

doing another remote lookup.

�resolv.conf
We start by exploring the /etc/resolv.conf file because it is the key to

determining exactly how the systemd-resolved.service works.

Chapter 12 Using systemd-resolved Name Service

http://www.example.net
http://www.example.net
http://www.example.net

323

�Historical Usage
This file used to be an ASCII plain-text file that contained a list of up to

three domain name servers that would be used to perform hostname

resolution into IP addresses. It still can be used that way, but that would

bypass systemd-resolved. Of course, that might be a desired outcome

as it was for me when NetworkManager took over this service and then

when systemd-resolved was first introduced and had a few problems.

It all works fine now, so I haven’t needed to do that for a few years

on most of my hosts.

The resolv.conf file also contains the domain name to search when

a fully qualified domain name (FQDN) isn’t appended to the hostname.

For example, a fully qualified domain name would be host1.example.

com. This can be searched without a problem. But suppose I just use a

hostname line host1 and not the domain name. In that case, the domain

name specified for searches is appended to the hostname.

A typical /etc/resolv.conf file used to look like that in Figure 12-1. It is

a link in /etc to the /run/NetworkManager/resolv.conf and contains the

search domain as well as the IP addresses of three name servers.

Figure 12-1.  A typical /etc/resolv.conf file prior to the advent of
systemd-resolved

Chapter 12 Using systemd-resolved Name Service

324

The first name server in the list is my internal name server. The

second and third are fallback external name servers. I use Google name

servers because I trust them to be reliable and to have the most up-to-date

information in their DNS database—far more than my ISP’s. Whichever

ISP I have been using at a given time, I have had many disruptions to my

Internet service due to nonresponsive, poorly configured, name servers

that were not updated in a timely manner. This is one of the reasons I

decided to set up my own internal name server. We’ll set one up for our

virtual network later in this chapter.

�Current Usage
The current use of /etc/resolv.conf is as a symbolic link (symlink) to a stub

file, /run/systemd/resolve/stub-resolv.conf, or to /run/systemd/resolve/

resolv.conf. The file linked determines how systemd-resolved is supposed

to deal with name service resolution requests. The default setup is for /etc/

resolv.conf to link to /run/systemd/resolve/stub-resolv.conf which enables

use of systemd-resolved although the systemd-resolved.service must also

be up and running.

EXPERIMENT 12-1: RESOLV.CONF

Let’s start by looking at /etc/resolv.conf. As you can see, it is a link that points

to /run/systemd/resolve/stub-resolv.conf.

[root@testvm1 ~]# cd /etc ; ll resolv.conf ; cat resolv.conf
lrwxrwxrwx. 1 root root 39 Nov 5 2022 resolv.conf -> ../run/
systemd/resolve/stub-resolv.conf
This is /run/systemd/resolve/stub-resolv.conf managed by
man:systemd-resolved(8).
Do not edit.
#

Chapter 12 Using systemd-resolved Name Service

325

This file might be symlinked as /etc/resolv.conf. If you're
looking at
/etc/resolv.conf and seeing this text, you have followed the
symlink.
#

This is a dynamic resolv.conf file for connecting local
clients to the
internal DNS stub resolver of systemd-resolved. This file
lists all
configured search domains.
#
Run "resolvectl status" to see details about the uplink
DNS servers
currently in use.
#
Third party programs should typically not access this file
directly, but only
through the symlink at /etc/resolv.conf. To manage man:resolv.
conf(5) in a
different way, replace this symlink by a static file or a
different symlink.
#
See man:systemd-resolved.service(8) for details about the
supported modes of
operation for /etc/resolv.conf.

nameserver 127.0.0.53
options edns0 trust-ad
search example.com
[root@testvm1 etc]#

The nameserver line in this file points to an IP address that has been

designated to represent the local hosts resolver. In this address, 127.0.0.53,

the last octet, 53, is the same number as the standard DNS port of 53.

Chapter 12 Using systemd-resolved Name Service

326

�Name Service Strategies
There are currently three strategies available for use in resolving domain

names into IP addresses. Each has its own tools, advantages, and best use

cases. Two of these tools require work on the part of the SysAdmin.

One of these, mDNS, though requiring almost no administrative work,

is quite chatty and creates a significant amount of network traffic. It also

has its share of problems.

We’ll explore all three strategies in this section, the /etc/hosts file,

Multicast DNS (mDNS), and nss-DNS.

�The /etc/hosts File
The /etc/hosts2 file is an ASCII plain-text file that can list the IP addresses

of all hosts on the local network and was the first tool used for local

network name resolution. It can also be used for non-local hosts.

In small networks, the /etc/hosts file on each host can be used as a

simple local name resolver. The SysAdmin can add and manage entries in

the hosts file. Maintaining copies of this file on several hosts can become

very time-consuming, and errors can cause much confusion and wasted

time before they’re found. Although the hosts file can have non-local

domains such as www.example.net added to it, if the IP addresses can be

discovered, it is a labor-intensive tool best suited for use in small local

networks.

A default hosts file is always present, but it would normally contain

only the lines needed to enable internal services and commands to

translate the localhost hostname to IPV4 address 127.0.0.1 and IPV6

address ::1—this is an explicitly defined standard to enable Linux services

and commands to deal with the local host.

2 Wikipedia, “hosts (file),” https://en.wikipedia.org/wiki/Hosts_(file)

Chapter 12 Using systemd-resolved Name Service

http://www.example.net
https://en.wikipedia.org/wiki/Hosts_(file)

327

EXPERIMENT 12-2: USING /ETC/HOSTS

Perform this experiment as root on your test system. In this experiment, you

will see the simple /etc/hosts file on your VM and then add some entries for

the local network to make it easier to communicate with other local hosts.

Open the /etc/hosts file in an editor. It will look like this, with only a set of

default entries.

Loopback entries; do not change.
For historical reasons, localhost precedes localhost.
localdomain:
127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6
localhost6.localdomain6
See hosts(5) for proper format and other examples:
192.168.1.10 foo.mydomain.org foo
192.168.1.13 bar.mydomain.org bar

Make a backup copy of the /etc/hosts file and store it in /root. Try to ping a

fake remote host before we change anything. I know, but bear with me. We’re

simulating a situation in which a remote host exists, but has no DNS entry in

the DNS database. The example.com domain exists and is intended for use in

testing such as we’re doing here.

[root@testvm1 ~]# ping -c2 badname.example.com
ping: badname.example.com: Name or service not known

This result shows that there is no resolution from the given hostname to an IP

address. Now edit the /etc/hosts file on testvm1 adding one line to the end so

that it looks like this:

Loopback entries; do not change.
For historical reasons, localhost precedes localhost.
localdomain:

Chapter 12 Using systemd-resolved Name Service

328

127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6
localhost6.localdomain6
See hosts(5) for proper format and other examples:

192.168.1.10 foo.example.org foo
192.168.1.13 bar.example.org bar
23.192.228.80 badname.example.com

Save the revised file. A reboot is not necessary.

Notice that IP addresses can have multiple hostnames associated with them.

Only a single host can be assigned a specific address, so these hostnames are

aliases and all point to the same host. This can be a way to maintain backward

compatibility with previous naming strategies, for example.

Let’s test the /etc/hosts file.

ping badname.example.com -c2
PING badname.example.com (23.192.228.80) 56(84) bytes of data.
64 bytes from badname.example.com (23.192.228.80): icmp_seq=1
ttl=44 time=62.1 ms
64 bytes from badname.example.com (23.192.228.80): icmp_seq=2
ttl=44 time=62.1 ms

--- badname.example.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1020ms
rtt min/avg/max/mdev = 62.088/62.112/62.136/0.024 ms

Comment out or delete the line you added to /etc/hosts and save the file again.

Chapter 12 Using systemd-resolved Name Service

329

I used the /etc/hosts file to manage name services for my network for

several years. It ultimately became too much trouble to maintain even with

only the 8–12 physical computers and a similar number of VMs I normally

have operational. As a result, I converted to running my own BIND name

server to resolve both internal and external hostnames.3

Most networks of any size require centralized management with name

services software such as BIND. However, smaller local networks can use

mDNS for hands-free resolver services.

�mDNS
Multicast DNS (mDNS)4 is a relatively new addition to name service

resolution. This name service strategy is that used by systemd-resolved.

Intended to provide name resolution for local networks that have no

internal, central name resolver, mDNS requires no user intervention. In

addition to automatic discovery of local hosts, it also uses more traditional

name services for access to the Internet.

Multicast services like mDNS send out broadcast (multicast) packets5

that are received and examined by every host on the network. The packet

is a request to the computer with the hostname it wants to communicate

with, to respond with its IP address so the requesting computer can send

further packets directly to that host. Since only one computer (hopefully)

has that hostname, only that computer will respond with its IP address

and the requesting host enters that hostname/IP address into its local

database. Other computers on the network that use mDNS can also add

3 Both, David, Build your own DNS server on Linux, https://www.both.
org/?p=4918
4 Wikipedia, “Multicast DNS,” https://en.wikipedia.org/wiki/Multicast_DNS
5 Wikipedia, “IP multicast,” https://en.wikipedia.org/wiki/IP_multicast

Chapter 12 Using systemd-resolved Name Service

https://www.both.org/?p=4918
https://www.both.org/?p=4918
https://en.wikipedia.org/wiki/Multicast_DNS
https://en.wikipedia.org/wiki/IP_multicast

330

that data to their own mDNS databases. With mDNS each host keeps its

own database. Entries in the database have a TTL (Time to Live), so the

entries will expire at the end of their TTL. This means that the host must

make another mDNS broadcast request to the network in order to obtain

that IP address again.

This hands-off approach means that even users with an internal

network consisting of a moderate number of hosts requires no user

intervention. It is implemented via the Avahi package which is installed

during the initial Fedora installation.

The cost of this level of automation for local host discovery is a

significant amount of network traffic from each host that is intended to

discover other hosts on the network. This type of chatty protocol sucks up

network bandwidth, uses host system resources, and is not fast relative to

the more traditional nss-DNS protocols.

�How It Works

The mDNS protocols require that the systemd-resolved.service be running

on all hosts. The resolvectl command can be used to view and provide a

little management of the state of the systemd-resolved.service.

EXPERIMENT 12-3: THE RESOLVECTL COMMAND

Perform this experiment as root. This first command starts systemd-resolved

on my VM. I’d disabled it so that you can see what it looks like as it starts.

systemctl start systemd-resolved.service
root@testvm1:/etc# systemctl status systemd-resolved.service
• systemd-resolved.service - Network Name Resolution
Loaded: loaded (/usr/lib/systemd/system/systemd-resolved.
service; disabled; preset: enabled)
Drop-In: /usr/lib/systemd/system/service.d
└─10-timeout-abort.conf, 50-keep-warm.conf

Chapter 12 Using systemd-resolved Name Service

331

Active: active (running) since Thu 2025-01-23 14:42:47
EST; 1s ago
Invocation: 30dae60d4b9c48fca7b2d736373a31b4
Docs: man:systemd-resolved.service(8)
man:org.freedesktop.resolve1(5)

https://systemd.io/WRITING_NETWORK_CONFIGURATION_MANAGERS
https://systemd.io/WRITING_RESOLVER_CLIENTS
Main PID: 2737 (systemd-resolve)
Status: "Processing requests..."
Tasks: 1 (limit: 9472)
Memory: 3.6M (peak: 4M)
CPU: 121ms
CGroup: /system.slice/systemd-resolved.service
└─2737 /usr/lib/systemd/systemd-resolved

Jan 23 14:42:47 testvm1.both.org systemd[1]: Starting systemd-
resolved.service - Network Name Resolution...
Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]:
Positive Trust Anchors:
Jan 23 14:42:47 testvm1.both.org systemd-
resolved[2737]: . IN DS 20326 8 2
e06d44b80b8f1d39a95c0b0d7c65d08458e880409bbc683457104237
c7f8ec8d
Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]:
Negative trust anchors: home.arpa 10.in-addr.arpa 16.172.in-
addr.arpa 17.172.in-addr.arpa 1>
Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]: Using
system hostname 'testvm1.both.org'.
Jan 23 14:42:47 testvm1.both.org systemd[1]: Started systemd-
resolved.service - Network Name Resolution.
Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]: enp0s3:
Bus client set search domain list to: both.org
Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]: enp0s3:
Bus client set default route setting: yes

Chapter 12 Using systemd-resolved Name Service

332

Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]:
enp0s3: Bus client set DNS server list to: 192.168.0.52,
8.8.8.8, 8.8.4.4
Jan 23 14:42:47 testvm1.both.org systemd-resolved[2737]: enp0s8:
Bus client set default route setting: no

lines 1-28/28 (END)

We can see the log entries that indicate setting the system’s hostname, the

default route, and the list of name servers.

The resolvectl command can be used to display the DNS status of all network

interfaces. This result is from my VM.

root@testvm1:~# resolvectl status
Global
Protocols: LLMNR=resolve -mDNS -DNSOverTLS DNSSEC=no/unsupported
resolv.conf mode: stub

Link 2 (enp0s3)
Current Scopes: DNS LLMNR/IPv4 LLMNR/IPv6
Protocols: +DefaultRoute LLMNR=resolve -mDNS -DNSOverTLS
DNSSEC=no/unsupported
Current DNS Server: 192.168.0.52
DNS Servers: 192.168.0.52 8.8.8.8 8.8.4.4
DNS Domain: both.org

Link 3 (enp0s8)
Current Scopes: LLMNR/IPv6
Protocols: -DefaultRoute LLMNR=resolve -mDNS -DNSOverTLS
DNSSEC=no/unsupported

This command can be used to resolve an FQDN to an IP address. This is

similar to the dig and nslookup commands, but it also shows the interface on

which it was discovered.

Chapter 12 Using systemd-resolved Name Service

333

+[root@testvm1 etc]# resolvectl query www.example.net
www.example.net: 93.184.216.34 -- link: enp0s3
 �2606:2800:220:1:248:1893:25c8:1946 --

link: enp0s3

-- Information acquired via protocol DNS in 2.2ms.

-- Data is authenticated: no; Data was acquired via local or
encrypted transport: no
-- Data from: network

�The Details

The /etc/resolv.conf and /etc/nsswitch.conf files are symbolic (soft) links

to the created files. Let’s look at these files.

EXPERIMENT 12-4: EXAMINING THE NSSWITCH AND RESOLV.CONF FILES

Because the nsswitch.conf and resolv.conf files contain the configuration for

name service resolution, let’s look at them in some detail.

Although these files are now links to the actual content, they were previously

both regular files and not links. systemd-resolved uses the link targets to

determine how to handle name resolution.

The links keep the same date and time as when they were originally included

in the installation package. The /etc/authselect/nsswitch.conf file was created

during system installation. The ../run/systemd/resolve/stub-resolv.conf was

created during the most recent boot.

cd /etc/ ; ll resolv.conf nsswitch.conf
lrwxrwxrwx. 1 root root 29 Jan 29 10:16 nsswitch.conf -> /etc/
authselect/nsswitch.conf
lrwxrwxrwx. 1 root root 39 Oct 24 10:53 resolv.conf -> ../run/
systemd/resolve/stub-resolv.conf

Chapter 12 Using systemd-resolved Name Service

334

Actually, two versions of the resolv.conf file are created in the /run/systemd/

resolve/ directory each time the host is booted.

cat resolv.conf
This is /run/systemd/resolve/resolv.conf managed by
man:systemd-resolved(8).
Do not edit.
#
This file might be symlinked as /etc/resolv.conf. If you're
looking at
/etc/resolv.conf and seeing this text, you have followed the
symlink.
#
This is a dynamic resolv.conf file for connecting local
clients directly to
all known uplink DNS servers. This file lists all configured
search domains.
#
Third party programs should typically not access this file
directly, but only
through the symlink at /etc/resolv.conf. To manage man:resolv.
conf(5) in a
different way, replace this symlink by a static file or a

different symlink.
#
See man:systemd-resolved.service(8) for details about the
supported modes of
operation for /etc/resolv.conf.

nameserver 192.168.0.52
nameserver 8.8.8.8
nameserver 8.8.4.4
search both.org

Chapter 12 Using systemd-resolved Name Service

335

cat /run/systemd/resolve/stub-resolv.conf
This is /run/systemd/resolve/stub-resolv.conf managed by
man:systemd-resolved(8).
Do not edit.cat stub-resolv.conf
#

This file might be symlinkevd as /etc/resolv.conf. If you're
looking at
/etc/resolv.conf and seeing this text, you have followed the
symlink.
#
This is a dynamic resolv.conf file for connecting local
clients to the
internal DNS stub resolver of systemd-resolved. This file
lists all
configured search domains.
#
Run "resolvectl status" to see details about the uplink
DNS servers
currently in use.
#
Third party programs should typically not access this file
directly, but only
through the symlink at /etc/resolv.conf. To manage man:resolv.
conf(5) in a
different way, replace this symlink by a static file or a
different symlink.
#
See man:systemd-resolved.service(8) for details about the
supported modes of
operation for /etc/resolv.conf.

nameserver 127.0.0.53
options edns0 trust-ad
search both.org

Chapter 12 Using systemd-resolved Name Service

336

The first file is a more traditional resolv.conf file, but it is not being used. It

defines three external servers for name resolution. This information can be

obtained from the DHCP server for the network or from NetworkManager

network connection files for static configurations.

The second file is the systemd-resolved version, stub-resolv.conf, and it is the

target of the /etc/resolv.conf symlink. This file defines the local host as the

name server for this client host.

�mDNS Performance

After several not-very-scientific experiments involving the time command,

I have found that mDNS is measurably slower than using historical DNS

services, especially in comparison to a network that provides its own name

servers. My experiments show that mDNS can take as much as five times

longer than historical name services. Of course, we’re only talking about

hundredths of a second difference, but that can be important in some

situations.

Delays can be especially noticeable to users accessing websites with

a lot of external links that need to be resolved such as found on large,

complex, commercial websites. Using ad blockers can help by simply not

attempting to load from external addresses that are known advertising

sources. However, in the ongoing battle between suppliers of ads and

ad blockers, the latest strategy is to pop up a dialog that informs you to

unblock ads or subscribe to the service.

Chapter 12 Using systemd-resolved Name Service

337

�nss-DNS
This is the historical name service and resolver combination. The Name

Service Switch (NSS)6 resolver performs the client tasks of requesting IP

addresses from the global Domain Name Service distributed database. It

has the attributes of being fast, easy to use, mature, and well known.

Originally developed by Sun Microsystems as part of their Solaris

operating system, it was rewritten for the GNU utilities and tools. Its code is

embedded in the GNU glibc7 library so is still available.

�Top-Level Configuration

Two ASCII plain-text files are used to provide the primary configuration for

name services. These files, nsswitch.conf and resolv.conf, have historical

origins having been around since the earliest versions of name service

resolvers. They’re still in use by systemd-resolved, but as we’ve seen, their

usage has taken on additional functionality.

�NSS and NSSwitch

As its name implies, the nsswitch—short for Name Service Switch—is

used to define the database sources and order in which name-service

information is obtained.

Unicast services like nss-DNS use a single server that maintains the

entire database. If a host needs the IP address of another host on the

network, it sends a unicast packet only to the name server requesting the

IP address from it. The name server responds only to the requesting host

with a packet containing that IP address.

6 gnu.org documentation, System Databases and Name Service Switch, https://
www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
7 General C Library. A collection of basic Linux functions that are always present.

Chapter 12 Using systemd-resolved Name Service

https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html

338

The NSS facility is a tool that is used by a number of services that need

name resolver data. Using NSS based on the data in the /etc/nsswitch.conf

configuration file, it aids them in locating the appropriate configuration

and name resolution sources in a specified sequence.

The sequences listed for each service in this file can be changed, and

can differ between distributions. They can also be modified to meet local

needs. I have never needed to change anything about this file, but it is a

good place to start problem determination if there seems to be a problem

with name resolution that can’t be otherwise explained.

Let’s take a look at it.

EXPERIMENT 12-5: THE NSSWITCH.CONF FILE

As root on your test host, display the nsswitch.conf file. Note that some lines

are wrapped in the data stream below:

[root@testvm1 etc]# cat nsswitch.conf
Generated by authselect on Tue Jan 17 21:33:15 2023
Do not modify this file manually, use authselect instead. Any
user changes will be overwritten.
You can stop authselect from managing your configuration by
calling 'authselect opt-out'.
See authselect(8) for more details.

In order of likelihood of use to accelerate lookup.
passwd: files sss systemd
shadow: files
group: files sss systemd
hosts: �files myhostname mdns4_minimal [NOTFOUND=return]

resolve [!UNAVAIL=return] dns
services: files sss
netgroup: files sss
automount: files sss

Chapter 12 Using systemd-resolved Name Service

339

aliases: files
ethers: files
gshadow: files
networks: files dns
protocols: files

publickey: files
rpc: files

Look at the hosts database entry in the data stream. The first entry is “files”

which means that the resolver is to search first the local database. The

database isn’t explicitly specified here, but it is the /etc/hosts file that we

experimented with above.

If a match is not found, the resolver moves on to the next entry which is

“myhostname.” This provides name resolution for the locally configured

system hostname as contained in the $HOSTNAME environment variable.

The myhostname entry in this line is new and is intended to provide fail-safe

resolution of any local hostnames such as localhost and localhost.localdomain.

This is built into the resolver code and is not dependent on the entries in the /

etc/hosts file.

Because all of these entries are sequence-sensitive, if an entry is found for a

hostname in the /etc/hosts database, that takes precedent over any other, later

entries.

How can you find the system hostname? There are multiple ways to do that,

but the $HOSTNAME environment variable contains the hostname and can be

easily used in system administration scripts.

[root@testvm1 etc]# echo $HOSTNAME
testvm1.both.org

Chapter 12 Using systemd-resolved Name Service

340

Many tools and applications require a local hostname to function properly, so

if the actual hostname is not present in the hosts file, it can be found in this

variable. Do you remember setting the hostname during the installation of

Fedora or your own preferred distribution?8 That’s where the hostname in this

variable comes from. It’s hugely important.

The hostnamectl9 utility can be used to change the hostname as well as to

display information about the host. I did this on my primary workstation, but

you can also do this on the VM, which is, unfortunately, much less interesting.

[root@david ~]# hostnamectl status
 Static hostname: testvm1.both.org
 Icon name: computer-vm
 Chassis: vm
 Machine ID: 679fb335f6e94d87b55e8ad3993245f8
 Boot ID: ab3fa56413c8470e8a6da7ff376c4b5c
 Product UUID: a7b3a47e-d756-6c41-91f5-8ce11f20b152
 Virtualization: oracle
 Operating System: Fedora Linux 41 (Xfce)
 CPE OS Name: cpe:/o:fedoraproject:fedora:41
 OS Support End: Mon 2025-12-15
OS Support Remaining: 10month 2w 5d
 Kernel: Linux 6.12.10-200.fc41.x86_64

 Architecture: x86-64
 Hardware Vendor: innotek GmbH
 Hardware Model: VirtualBox
 Hardware Serial: 0
 Firmware Version: VirtualBox
 Firmware Date: Fri 2006-12-01
 Firmware Age: 18y 1month 3w 3d

8 Unless it’s set by the DHCPD service at boot time.
9 Use the command man 8 nss-myhostname.

Chapter 12 Using systemd-resolved Name Service

341

That’s a lot of interesting and important information. The little keyboard icon

used on the “Chassis” line resolves visually a bit better here than in my

terminal session. We’ve seen much of this information in somewhat less

readable formats, but there is also information here that I’ve never seen

displayed elsewhere, like the operating system support info.

Here’s the data from my oldest PC, a Dell OptiPlex GX620 built in August

of 2005.

hostnamectl status
 Static hostname: intrepid.both.org
 Icon name: computer-desktop
 Chassis: desktop
 Machine ID: e28a5d4ba9cd4eb2a2f594f92c24edf9
 Boot ID: b79874ab2a10487eb7dc6f813dcf7846
 Product UUID: 44454c4c-5900-1051-8033-c3c04f423831
 Operating System: Fedora Linux 41 (Xfce)
 CPE OS Name: cpe:/o:fedoraproject:fedora:41
 OS Support End: Mon 2025-12-15
OS Support Remaining: 10month 2w 5d
 Kernel: Linux 6.12.10-200.fc41.x86_64
 Architecture: x86-64
 Hardware Vendor: Dell Inc.

 Hardware Model: OptiPlex GX620
 Hardware Serial: CYQ3B81
 Firmware Version: A01
 Firmware Date: Tue 2005-05-24
 Firmware Age: 19y 8month 2d

Chapter 12 Using systemd-resolved Name Service

342

This old computer has only an Intel Pentium 4 with two cores and 4G of

RAM. It still runs 24x7 at full blast on the most recent releases of Fedora.10 The

desktop computer icon for the Chassis line is more realistic for a hardware

system than a virtual one.

When used with no arguments, the hostnamectl utility displays the

same status as above for the local host. Changing the hostname can be

accomplished using this same utility. The new hostname should be the

argument.

[root@testvm1 ~]# hostnamectl hostname newhostname

This name change is stored in the /etc/hostname file but does not take effect

until the next boot. You could also just edit the /etc/hostname file and reboot

because all the hostnamectl command does is to change the hostname in the /

etc/hostname file.

The next entry in nsswitch.conf is mdns4_minimal. This tells nss-resolve to

use the Avahi service daemon to use mDNS to locate the host. All of the hosts

on the local network must be running the avahi-daemon.service in order to

participate in mDNS.

The next thing we find in this list is [NOTFOUND=return] resolve. This bit

of code instructs nss-resolve11 to use systemd-resolved12 for name resolution.

This mode uses the /etc/resolv.conf file.

10 For more details of this old system, see my website page, https://www.both.
org/?p=7808
11 Systemd Documentation, nss-resolve, https://systemd.network/nss-
resolve.html#
12 Systemd Documentation, systemd-resolved.service, https://systemd.network/
systemd-resolved.service.html

Chapter 12 Using systemd-resolved Name Service

https://www.both.org/?p=7808
https://www.both.org/?p=7808
https://systemd.network/nss-resolve.html
https://systemd.network/nss-resolve.html
https://systemd.network/systemd-resolved.service.html
https://systemd.network/systemd-resolved.service.html

343

Lastly, at least in Fedora, [!UNAVAIL=return] dns means that if the

systemd-resolved is unavailable, then use the historical nss-DNS service for

name resolution.

The man page for nsswitch.conf contains information about the other

services that use name services, for example, the passwd database for user

passwords.

Experiment 12-5 illustrates the complexity of the current name

resolution strategy while also highlighting the flexibility available to the

SysAdmin in aid of supporting local needs for name resolution.

�systemd-resolved.service
We’re finally up to the systemd-resolved.service. The systemd-resolved.

service provides name resolution services for modern Fedora, Red Hat

based, and other distributions. It works with and is a requirement for

Multicast DNS (mDNS). We’ll explore mDNS in this chapter, but for now

let’s just take a quick look at the service itself.

EXPERIMENT 12-6: SYSTEMD-RESOLVED.SERVICE

The systemd resolver can be started, restarted, and stopped, as well as having

its status checked by using the systemctl command like the other systemd

services. Check its current status; it should be running.

[root@testvm1 ~]# systemctl status systemd-resolved.service
● systemd-resolved.service - Network Name Resolution
Loaded: loaded (/usr/lib/systemd/system/systemd-resolved.
service; enabled; preset: enabled)
Drop-In: /usr/lib/systemd/system/service.d
└─10-timeout-abort.conf, 50-keep-warm.conf

Chapter 12 Using systemd-resolved Name Service

344

Active: active (running) since Fri 2025-01-24 12:21:30
EST; 13h ago
Invocation: 349ff71eb299462996dbf59e1501501b
Docs: man:systemd-resolved.service(8)
man:org.freedesktop.resolve1(5)

https://systemd.io/WRITING_NETWORK_CONFIGURATION_MANAGERS
https://systemd.io/WRITING_RESOLVER_CLIENTS
Main PID: 1012 (systemd-resolve)
Status: "Processing requests..."
Tasks: 1 (limit: 9472)
Memory: 9.7M (peak: 10.4M)
CPU: 1.272s
CGroup: /system.slice/systemd-resolved.service
└─1012 /usr/lib/systemd/systemd-resolved

Jan 24 12:21:29 testvm1.both.org systemd[1]: Starting systemd-
resolved.service - Network Name Resolution...
Jan 24 12:21:29 testvm1.both.org systemd-resolved[1012]:
Positive Trust Anchors:
Jan 24 12:21:29 testvm1.both.org systemd-
resolved[1012]: . IN DS 20326 8 2
e06d44b80b8f1d39a95c0b0d7c65d08458e880409bbc6834571042>
Jan 24 12:21:29 testvm1.both.org systemd-resolved[1012]:
Negative trust anchors: home.arpa 10.in-addr.arpa 16.172.in-
addr.arpa 17>
Jan 24 12:21:29 testvm1.both.org systemd-resolved[1012]: Using
system hostname 'testvm1.both.org'.
Jan 24 12:21:30 testvm1.both.org systemd[1]: Started systemd-
resolved.service - Network Name Resolution.
Jan 24 12:21:33 testvm1.both.org systemd-resolved[1012]: enp0s3:
Bus client set search domain list to: both.org
Jan 24 12:21:33 testvm1.both.org systemd-resolved[1012]: enp0s3:
Bus client set default route setting: yes

Chapter 12 Using systemd-resolved Name Service

345

Jan 24 12:21:33 testvm1.both.org systemd-resolved[1012]:
enp0s3: Bus client set DNS server list to: 192.168.0.52,
8.8.8.8, 8.8.4.4
Jan 24 12:21:33 testvm1.both.org systemd-resolved[1012]: enp0s8:
Bus client set default route setting: no

Other functionality for the systemd resolver is managed with the resolvectl

command which we will look at later in this chapter.

�Fedora Name Resolution Fails When Using
systemd-resolved
When I first installed Fedora 33, one of the major changes, a switch from

the nss resolver to systemd-resolved, caused me a significant amount of

trouble and borked my entire network.

The change from the venerable nsswitch and NetworkManager to

systemd-resolved damaged and slowed name services. The result of this

resolver change was apparent in a number of symptoms. Inability to find

the addresses of many remote servers resulting in timeouts was the most

noticeable. When the connections were made, they were very slow to

respond.

I hadn’t realized how lengthy the delays in name resolution were

until after resolving this problem. Web pages that took minutes to load—

and some never did with all the external links they use to load pictures

and advertisements—now take only a second or so. Tests using the dig

command show name resolution times of around 100 milliseconds (msec)

for sites that were not currently in the cache of my name server.

I run my own name server using BIND. I started this soon after I began

learning Linux as a way to overcome the horrible name services provided

by my series of ISPs. They were very slow and would fail intermittently,

Chapter 12 Using systemd-resolved Name Service

346

always at the most inopportune times for me. It was far less trouble for me

to start my own name service, and that has been the case—until systemd-

resolved forced its way onto my Fedora systems. All of them.

These problems still exist and still cause problems today.

�Determining the Problem
A bit of problem determination showed that even connecting to name

servers at Google DNS would time out:

dig www.both.org
;; communications error to 8.8.8.8#53: timed out
;; communications error to 8.8.8.8#53: timed out
;; communications error to 8.8.8.8#53: timed out
;; communications error to 8.8.4.4#53: timed out
; <<>> DiG 9.18.28 <<>> www.both.org
;; global options: +cmd
;; no servers could be reached

I started with resolv.conf. The initial default configuration for resolv.

conf is as a pointer to a stub as seen here:

lrwxrwxrwx. 1 root root 39 Apr 14 18:58 resolv.conf -> ../run/
systemd/resolve/stub-resolv.conf

The /etc/resolv.conf file in Figure 12-2 defined the resolver as the

localhost at 127.0.0.53. The comments in this file are enlightening. I had

no idea that this had supplanted the previous resolver and resolv.conf

managed by NetworkManager. This extracts the resolver function from

NetworkManager but leaves it with the rest of its network management

responsibilities.

Chapter 12 Using systemd-resolved Name Service

347

Figure 12-2.  The /run/systemd/resolve/stub-resolv.conf file points to
the localhost as the name server

The /etc/nsswitch.conf file is used to determine the order in which

various resources are accessed for various services, including hostname

resolution. This file has also changed and contains some weird logic in

the hosts line. Based on my experiments, it’s this logic that appears to slow

things down, along with the use of mdns4_minimal and resolve sources.

There’s also this new thing called authselect which now generates the

nsswitch.conf file.

The original file, seen in Figure 12-3, is found at the location, /etc/

authselect/nsswitch.conf, and /etc/nsswitch.conf is a symlink to that file.

Chapter 12 Using systemd-resolved Name Service

348

Figure 12-3.  The original nsswitch.conf file has some interesting code
for the hosts entry

I also found many named errors in the systemd journal. A small

sample is shown in Figure 12-4.

Figure 12-4.  A sampling of the name service errors from the systemd
journal indicates resolver problems

Chapter 12 Using systemd-resolved Name Service

349

Several online resources indicate that these errors are caused by

configuration issues for the target domain’s name services. The comments

on these articles suggest that the domain admins should fix their

problems, but the commenters recognize that’s unlikely to happen. So we

must implement our own changes to fix someone else’s problem.

�Resolving the Problem
It takes several steps to resolve this problem. This section describes each

step and why it’s needed as part of the complete solution.

	 1.	 Stop and disable the Avahi service

The Avahi website describes Avahi better than I can.

Avahi is a system which facilitates service discovery

on a local network via the mDNS/DNS-SD protocol

suite. This enables you to plug your laptop or

computer into a network and instantly be able

to view other people who you can chat with, find

printers to print to or find files being shared.

Compatible technology is found in Apple MacOS X

(branded “Bonjour” and sometimes “Zeroconf”).

Avahi is the basis for many of the good things that

end user simplification can support; however it’s

not going to be needed when we disable some of the

other services that it supports.

systemctl disable --now avahi-daemon.service

Chapter 12 Using systemd-resolved Name Service

350

	 2.	 Stop and disable the Avahi daemon

The Avahi daemon socket is a part of the Avahi

service. When a program requests Avahi services, it

does so through the daemon rather than directly to

the service itself. The socket then sends the request

to the service. Other systemd services also work this

way. This won’t be required since we’ve disabled the

Avahi service. A socket like this could also cause the

service it belongs to to start even though the service

is disabled. We don’t want to allow that to happen.

systemctl disable --now avahi-daemon.socket

	 3.	 Stop and disable the systemd-resolved service

The systemd-resolved service is the root cause of

the problems we’re having, so we disable it. The

systemd-resolved man page states its purpose

succinctly.

systemd-resolved is a system service that provides

network name resolution to local applications.

It implements a caching and validating DNS/

DNSSEC stub resolver, as well as an LLMNR and

MulticastDNS resolver and responder.

The man page then proceeds to describe the

interfaces it exposes to programs and a high-level

statement about how to access it as a resolver. This

service is the root cause of the problem, and we

disable it.

systemctl disable --now systemd-
resolved.service

Chapter 12 Using systemd-resolved Name Service

351

	 4.	 Delete the /etc/resolv.conf link

The NetworkManager service examines the /etc/

resolv.conf file to determine which servers to use for

name resolution. Up to three servers are supported

in a simple list format. This file also defines

the name of the domain in which to search for

hostnames if a simple hostname is provided, that is,

host, rather than the FQDN (fully qualified domain

name), that is, host.example.com.

Only one name server is specified in this file, the

local host. The systemd-resolved service and

Avahi search the local network for other local

hosts using systemd-resolved and can configure

name resolution so that the hosts can talk among

themselves. If there is a name server found, such as

that provided on wired or wireless routers, it can use

that to perform name resolution for external hosts

such as www.both.org.

If there’s no locally accessible name server, external

name resolution is not possible. This is what

happened to me at the beach. The local name server

at the hotel was intermittent, so no name resolution

was possible. I could, however, still ping remote

hosts such as www.both.org using the IP address.

Yes—this is an edge case. But it clearly does happen.

So we delete the existing /etc/resolve.conf link. We

won’t create a new resolv.conf file because once we

get the rest of this mess sorted, NetworkManager

will create a usable one. The NetworkManager

service is responsible for creating the /etc/resolv.

Chapter 12 Using systemd-resolved Name Service

http://www.both.org
http://www.both.org

352

conf file at boot time if it doesn’t exist. If systemd-

resolved is running, the default link is created,

which is not the one we want.

rm -f /etc/resolv.conf

	 5.	 Delete the /etc/nsswitch.conf link

The man page for nsswitch.conf provides a brief

description of the uses for this file.

The Name Service Switch (NSS) configuration file, /

etc/nsswitch.conf, is used by the GNU C Library and

certain other applications to determine the sources

from which to obtain name-service information in a

range of categories, and in what order. Each category

of information is identified by a database name.

My testing determined that the /etc/nsswitch.

conf file shown at the beginning of this chapter is

directly responsible for the slow resolution speeds

I encountered, whether at the beach or here in my

home lab. If you look back at that file, the logic in the

hosts line seems to be the cause.

We don’t need—or really want—to delete the actual

nsswitch.conf file. We’ll just delete the symbolic link

(symlink) in /etc.

rm -f /etc/nsswitch.conf

	 6.	 Create a revised nsswitch.conf

Since we deleted the symlink to this file in the

previous step, we need to create a new version of

this file, but it won’t be a symlink. After the next

step, it won’t be changed or overwritten. I copied

Chapter 12 Using systemd-resolved Name Service

353

the original from /etc/authselect/nsswitch.conf to

/etc so that it’s not a symlink. I made my changes

to this file, which are shown in bold in Figure 12-5.

Note that some lines are wrapped.

Figure 12-5.  The revised nsswitch.conf file with the changes
shown in bold

I commented out the original hosts line and

added a new one with the desired changes. This

leaves an easy option for returning to the original

configuration.

	 7.	 Opt out of authselect

In order to prevent authselect from changing /etc/

nsswitch, we opt out.

authselect opt-out

Chapter 12 Using systemd-resolved Name Service

354

You can safely ignore the first line of the nsswitch.

conf file and make changes to it manually. I usually

delete that first line or change it so I know I can

modify this file.

	 8.	 Restart NetworkManager

The last step is to restart the NetworkManager

service. This will create a new /etc/resolv.conf and

utilize the new nsswitch.conf file we created.

systemctl restart NetworkManager.service

Every time it’s restarted, whether at Linux startup or a command-line

restart, NetworkManager creates the new /etc/resolv.conf using the data

provided by the DHCP server for the network or from NetworkManager

Connection Files.13 For many stand-alone systems in home and office, this

DHCP server is usually the wired/wireless router.

The resolv.conf file for my VM is shown in Figure 12-6, and it contains

the information obtained from my DHCP server.

Figure 12-6.  The resolv.conf file generated by NetworkManager from
the connection files I configured for this interface

13 Both, David, NetworkManager on Linux: #3 — How I migrated to NetworkManager
Connection Files for configuration, https://www.both.org/?p=4863

Chapter 12 Using systemd-resolved Name Service

https://www.both.org/?p=4863

355

The server at 192.168.0.52 is my internal server. It handles name

services for the local network with zone files and uses the top-level DNS

servers for external network name resolution. If you want to override

the network configuration provided by a DHCP server, you can explicitly

configure the network interface using NetworkManager Connection Files.

At this point, name services are using NSSwitch with a decent and

reliable resolv.conf file. I tested this using a few pings to internal and

external hosts. I always use example.com for external testing like this.

�Concluding Thoughts About nsswitch
Based on my experimentation, the nsswitch.conf file generated by

authselect, and dependence on the Avahi daemon to locate services such

as network configuration and other hosts on the local network, slows

the entire process to the point of uselessness. I think aiming at Linux

on the desktop is an admirable goal, and I’ll be happy when Linux is on

the majority of desktops. While this may work—once the problems are

resolved—for minimally technical users, it can cause issues for those of us

SysAdmins who’ve had things well configured and working for years.

In previous attempts about fixing the resolver problems, I was able to

resolve the issues at hand, but after this last round of extreme symptoms,

I finally realized the extent of the multiple root causes. Part of the issue is

that various systemd name service tools have been added over a period of

time rather than all at once. This section of the chapter considered all of

the currently known root causes for name service resolution issues related

to systemd-resolved and explained how to resolve them.

I suggest reading the man pages for each of the files mentioned in this

article as there is additional important information about each that can be

very helpful.

Chapter 12 Using systemd-resolved Name Service

356

�Summary
Name resolution is a critical service for hosts connected to the Internet,

and systemd-resolved is the most current implementation of a resolver for

many Linux distributions. Its intended use case is for small networks with

no internal name service server, usually because no SysAdmin is available

to create a DNS or DHCP server.

While it can work well in that limited use case, it has failed miserably in my

use case in which I have both DNS and DHCP services on my internal server.

Reverting to the nss-DNS resolver has resolved my name resolution problems.

Don’t misunderstand me. I’m not suddenly saying I hate systemd.

That’s not it at all. What I am saying is that the unintended consequences

of these decisions can cause SysAdmins pain as they try to determine

what’s changed and how to fix it. In this case, it’s simply that what’s

good for one set of users is not necessarily good for other sets of users.

The use case for some of my hosts is significantly different from that of

nontechnical users.

Networks of any size with DHCP or static network configurations are

much better suited to nss-DNS name resolution services.

�Exercises
Complete the following exercises to finish this chapter:

	 1.	 What is the function of systemd-resolved?

	 2.	 What is its best use case?

	 3.	 Compare and contrast the functions of mDNS and

nss-DNS. I used to hate this type of question when I

was in school.

	 4.	 Describe the use case in which the nss-DNS resolver

is a better choice than systemd-resolved.

Chapter 12 Using systemd-resolved Name Service

357© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_13

CHAPTER 13

Replacing rc.local
in systemd

�Objectives
After reading this chapter, you will be able to

•	 Describe the function of rc.local

•	 State the reason that rc.local needs to be replaced with

a systemd service unit

•	 Create a service unit that can launch one or more

programs during Linux startup

•	 Test that service from the command line

•	 Enable the service to run during startup

�Introduction
Have you been missing rc.local for adding commands to run on startup in

a systemd system? Here’s how to set up similar functionality with today’s

systemd.

https://doi.org/10.1007/979-8-8688-1328-3_13#DOI

358

A few years ago, I encountered two different problems on two different

Linux hosts. Each required a unique circumvention because I had not yet

found a real solution. However, the method for delivering each circumvention

was the same: run a command during or soon after Linux startup.

The rc.local file was—and in some cases still is—the place for Linux

SysAdmins to put commands that need to be run at startup. Use of the

rc.local file is not only deprecated but, after a couple of hours’ worth of

attempts, was not working in any event. This is despite the fact that the

systemd documentation mentions the use of a “generator” that generates

systemd services from an rc.local file if one exists. That seems to be a good

way as any to enforce deprecation—make it not work.

The details of my specific problem are not particularly relevant to this

discussion, so I will use a simple and easily tracked command as the content

of our local startup file. We will add a date-stamped line to a local log file to

verify that the Bash program we need to run at startup actually works.

�Boot vs. Startup
Understanding the Linux boot and startup process is important for

configuring Linux and resolving startup issues. In reality, there are two

sequences of events that are required to boot a Linux computer and make

it usable: boot and startup. The boot sequence starts when the computer

is turned on and finishes when the kernel is initialized and systemd is

launched. The startup process then takes over and finishes the task of

getting the Linux computer into an operational state.

Overall, the Linux boot and startup process is fairly simple to

understand. It is comprised of the following steps:

	 1.	 BIOS power-on self-test (POST)

	 2.	 Bootloader (GRUB2)

	 3.	 Kernel

	 4.	 systemd

Chapter 13 Replacing rc.local in systemd

359

For a much more detailed description of both the boot and startup

sequences, refer to Chapter 2.

�Local Startup
System administrators sometimes add commands to the startup sequence

that are locally useful. These additions may aim to start or run local

processes that are not part of the standard systemd startup. It is possible to

add a new systemd service unit to launch each program needed at startup,

but the old rc.local method provided a single executable Bash script for

any and all local startup needs. We, too, can use this single file approach

with systemd. The elegance of this solution is that it makes it easy to add

more startup commands at a later time, without the need to add more

service units to systemd unless there is a specific reason for doing so.

Our solution is to create a single systemd service unit and place any

required Linux commands into the Bash script. There are two parts to this

solution. One is obvious: we need an executable file. And two, we need to

create a service unit for systemd that runs the executable.

�Create the Executable File
This is a trivial exercise for any SysAdmin familiar with Bash programming.

In fact, we will create a Bash program and place it in the Linux Filesystem

Hierarchical Standard (FHS)1 location for local executable files, /usr/
local/bin. An argument could be made for placing this executable file

in another location, but /usr/local/bin is the one that makes the most

sense to me since this location makes it easy for the SysAdmin to run the

script from the command line if necessary. The /usr/local/bin directory

is always in every user’s $PATH, including that of the root user.

1 Both, David, The Linux Filesystem Hierarchical Standard,
https://www.both.org/?p=6082

Chapter 13 Replacing rc.local in systemd

https://doi.org/10.1007/979-8-8688-1328-3_2
https://www.both.org/?p=6082
https://www.both.org/?p=6082

360

EXPERIMENT 13-1: CREATING AN EXECUTABLE FILE

Create the mystartup.sh file shown here, and place it in /usr/local/bin and

make it executable. I used 754 permissions. Be sure to use the location for

Bash that is correct for your distribution in the shebang line. For example,

Debian-based distributions locate Bash at /bin/bash, while Red Hat and related

distributions such as Fedora place it in /usr/bin/bash.

#!/usr/bin/bash

##
mystartup.sh
#
This shell program is for testing a startup like rc.local
using systemd.
#
By David Both
Licensed under GPL V2 or later at your option.
#
##
This program should be placed in /usr/local/bin
##
This is a test entry
echo `date +%F" "%T` "Startup worked" >> /root/mystartup.log

This version of the mystartup.sh file is intended only to verify that our service

and the executable file both work as expected.

Note T he comments in the files tell you where they need to be
located.

Chapter 13 Replacing rc.local in systemd

361

Be sure to test this executable by running it from the command line. The first

time you run this shell script, you should see a new file, /root/mystartup.
log, with a time and date along with the text, "Startup worked". We

create this log file and add lines to it every time the script is run as a simple

test to ensure that our script is working.

Run the script a couple more times. Your results should be similar to these:

mystartup.sh
cat mystartup.log
2025-01-25 15:17:52 Startup worked
2025-01-25 15:18:04 Startup worked
2025-01-25 15:18:05 Startup worked

That is all we need to do to create the file that may eventually contain our local

startup commands. Just add anything that needs to run at startup to this file.

�Create the systemd Service
The service unit we will now create is a standard systemd service unit file.

EXPERIMENT 13-2: CREATING THE SYSTEMD SERVICE

This simple file is used only to run the mystartup.sh script at startup.

Create a new file, /usr/local/lib/systemd/system/mystartup.service. I had to

create this directory as it isn’t created by default during the installation.

mkdir -p /usr/local/lib/systemd/system/

Chapter 13 Replacing rc.local in systemd

362

Add the following contents to the file:

##
mystartup.service
#
This service unit is for testing my systemd startup
service.
By David Both
Licensed under GPL V2 or later
#
##
This program should be placed in the
/usr/local/lib/systemd/system/ directory.
Create a symlink to it from the /etc/systemd/system
directory.
##

[Unit]
Description=Runs /usr/local/bin/mystartup.sh

[Service]
ExecStart=/usr/local/bin/mystartup.sh

[Install]
WantedBy=multi-user.target

This file does not need to be executable. This file could also be located in

/etc/systemd/system, but as a local file it is better placed in the /usr/
local/lib/systemd/system/ directory to meet the Linux FHS standards.

We should test the final service unit file before rebooting the Linux host for the

final test. First, let’s verify that systemd sees the service:

Chapter 13 Replacing rc.local in systemd

363

systemctl status mystartup
• mystartup.service - Runs /usr/local/bin/mystartup.sh
Loaded: loaded (/usr/local/lib/systemd/system/mystartup.
service; linked; vendor preset: disabled)
Active: inactive (dead)
[root@testvm1 ~]#

This result tells us that the service is recognized by systemd. Now, let’s start

the service. Doing so will run the script but will not configure the new service

to run at boot time.

systemctl start mystartup

Check the log file’s contents to verify the new line was added.

�Enable the New Service
All that is left is to enable the service so that it runs on startup.

EXPERIMENT 13-3: ENABLE THE SERVICE

This command enables the service so that it is activated during each startup

sequence, as well as immediately.

[root@testvm1 ~]# systemctl enable --now mystartup
Created symlink /etc/systemd/system/multi-user.target.wants/
mystartup.service ➤ /usr/local/lib/systemd/system/mystartup.
service.
[root@testvm1 ~]#

Check the temporary log we created to verify that the service started.

Chapter 13 Replacing rc.local in systemd

364

�Revise mystartup.sh
The initial version of the mystartup.sh executable file redirects the output

of its final line to the file, /root/mystartup.log, so that we can easily verify

its functioning at all stages of development. It’s now time to finalize the

executable file because we no longer need the temporary log file we’ve

been using.

EXPERIMENT 13-4: FINALIZE THE EXECUTABLE FILE

Before making any changes, let’s look at the systemd journal for the entries

pertaining to our new service.

journalctl -u mystartup
Jan 25 15:55:00 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 25 15:55:00 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.
Jan 26 07:58:16 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 07:58:16 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.

This shows that systemd is recording each time the service starts and

completes in the journal. All we need to do is check the journal.

Change the last line of the mystartup.sh file by removing the redirection that

adds a line to our test log file each time it runs. The revised line will still print

the message, but it won’t be redirected. Instead, it will appear in the journal.

This is a good and easy way to add entries to the journal when needed.

The revised line looks like this:

echo `date +%F" "%T` "Startup worked"

Chapter 13 Replacing rc.local in systemd

365

Now start the service and verify that the journal contains the appropriate entries.

journalctl -u mystartup
Jan 25 15:55:00 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 25 15:55:00 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.
Jan 26 07:58:16 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 07:58:16 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.
Jan 26 08:31:07 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 08:31:07 testvm1.both.org mystartup.sh[8933]:
2025-01-26 08:31:07 Startup worked
Jan 26 08:31:07 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.

�Final Test
The final test for our new service is to reboot the host and verify the

appropriate entries were added to the systemd journal.

EXPERIMENT 13-5: FINAL TESTING

Reboot the Linux host and check the journal to ensure that the appropriate

entries were added.

systemctl status mystartup
⚬ mystartup.service - Runs /usr/local/bin/mystartup.sh
Loaded: loaded (/usr/local/lib/systemd/system/mystartup.
service; enabled; preset: disabled)

Chapter 13 Replacing rc.local in systemd

366

Drop-In: /usr/lib/systemd/system/service.d
└─10-timeout-abort.conf, 50-keep-warm.conf
Active: inactive (dead) since Sun 2025-01-26 14:01:56
EST; 20s ago
Duration: 632ms
Invocation: e8c6bdee1b9043c68a21efd1345bef08
Process: 1050 ExecStart=/usr/local/bin/mystartup.sh
(code=exited, status=0/SUCCESS)
Main PID: 1050 (code=exited, status=0/SUCCESS)
Mem peak: 1.2M
CPU: 10ms

Jan 26 14:01:56 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 14:01:56 testvm1.both.org mystartup.sh[1050]:
2025-01-26 14:01:56 Startup worked
Jan 26 14:01:56 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.

journalctl -u mystartup
Jan 25 15:55:00 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 25 15:55:00 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.
Jan 26 07:58:16 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 07:58:16 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.
Jan 26 08:31:07 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 08:31:07 testvm1.both.org mystartup.sh[8933]:
2025-01-26 08:31:07 Startup worked

Chapter 13 Replacing rc.local in systemd

367

Jan 26 08:31:07 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.
-- Boot 1dafb37f3cfe468990a7a61e18573865 --
Jan 26 14:01:56 testvm1.both.org systemd[1]: Started
mystartup.service - Runs /usr/local/bin/mystartup.sh.
Jan 26 14:01:56 testvm1.both.org mystartup.sh[1050]:
2025-01-26 14:01:56 Startup worked
Jan 26 14:01:56 testvm1.both.org systemd[1]: mystartup.
service: Deactivated successfully.

Notice the entry indicating that a boot has taken place.

�A Temporary Option
There is a systemd option for continuing to use rc.local for a little longer,

the rc-local service. It is possible to continue support for the old rc.
local file by enabling the service with the command systemctl enable
rc-local. The commands in the rc.local file will run at the next boot. Of

course, you can use systemctl enable --now rc-local to run rc.local

immediately without performing a reboot.

However, it is still true that rc.local is obsolete. The man page for

systemd-rc-local-generator states this explicitly:

Support for /etc/rc.local is provided for compatibility with
specific System V systems only. However, it is strongly recom-
mended to avoid making use of this script today, and instead
provide proper unit files with appropriate dependencies for
any scripts to run during the boot process.

As a result, it is wise to use this option as a temporary solution while

migrating the contents of your rc.local file to one or more systemd services.

Chapter 13 Replacing rc.local in systemd

368

�Cleanup
Let’s do just a bit of cleanup before moving on. It’s not necessary to delete

the new files you’ve created, so you can use them as templates. Just disable

the service unit you created so it won’t run every time you reboot the

test system.

�Summary
The rc.local file is obsolete, and all temporary support for it will soon be

withdrawn completely. The Bash shell script and systemd service we have

created for this runs once at startup and then exits. It does not remain in

memory as a daemon because it was not designed to do so. The procedure

we used to create our local startup service can also be used to create any

new service for systemd. It’s not that hard once we know how to do it.

We also saw that a service that is designed to run at startup can also

be triggered at the command line using systemctl, which provides a less

intrusive way to test it.

All support for rc.local will be removed in the relatively near future, so

understanding how to replace it with systemd tools is important.

�Exercises
Complete the following exercises to finish this chapter:

	 1.	 What are your use cases for running programs

during system startup? It’s OK if you don’t have any

now, but you might think of some later.

	 2.	 Describe and explain the content of the service unit

file created in this chapter.

Chapter 13 Replacing rc.local in systemd

369

	 3.	 Why did we locate the service unit file in the

directory we did?

	 4.	 Design and perform an experiment to determine

whether the service unit you created in this chapter

can execute two or more commands and other

external executables such as locally created scripts.

Chapter 13 Replacing rc.local in systemd

371© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_14

CHAPTER 14

Getting More Out
of the Journal

�Objectives
After reading this chapter, you will be able to

•	 Narrow down the results of journal searches using

various options of the journalctl command

•	 Extract relevant data from the systemd journal to use in

solving problems

�Introduction
We’ve already seen some uses of the journal in previous chapters. In this

chapter, we’ll explore the systemd journal and more ways to narrow down

the results of the journalctl command to further help locate and identify

problems—or just to satisfy your curiosity about what’s going on in your

Linux host.

https://doi.org/10.1007/979-8-8688-1328-3_14#DOI

372

�Options to Narrow Search Results
The journalctl(1) man page lists all the options that can be used to

narrow searches. Table 14-1 summarizes some of the options I use most

frequently. Most of these options can be used in various combinations

to further narrow a search. Refer to Chapter 7 for details on creating and

testing timestamps, as well as important tips to help in narrowing down

the results of a search.

Table 14-1.  Journal options that help narrow a search

Option Description

--list-boots This displays a timestamped list of boots. The information

can be used to show journal entries only for a particular boot.

-b [offset|
boot ID]

Specifies which boot to display information for. It includes all

journal entries from that boot through shutdown or reboot.

--facility=
[facility name]

This specifies the facility names as they’re known to syslog.

Use --facility=help to list the valid facility names.

-k, --dmesg These display only kernel messages and are equivalent to

using the dmesg command.

-S, --since
[timestamp]

These show all journal entries since (after) the specified

time. They can be used with --until to display an arbitrary

range of time. Fuzzy times such as “yesterday” and “2 hours

ago”—with quotes—are also allowed.

-u [unit name] The -u option allows you to select specific units to examine.

You can use a unit name or a pattern for matching. This option

can be used multiple times to match multiple units or patterns.

-U, --until
[timestamp]

These show all journal entries until (prior to) the specified

time. They can be used with --since to display an arbitrary

range of time. Fuzzy times such as “yesterday” and “2 hours

ago”—with quotes—are also allowed.

Chapter 14 Getting More Out of the Journal

https://doi.org/10.1007/979-8-8688-1328-3_7

373

The journalctl command is designed to extract usable information

from the systemd journals using powerful and flexible criteria for

identifying the desired data.

It’s not usually necessary or even desirable to list all the journal entries

and manually search through them. Sometimes I look for entries related to

a specific service, and in other instances I look for entries that happened at

specific times. The journalctl command provides powerful options that

allow you to see only the data you are interested in finding.

Let’s explore a few more of these options, especially the ones that I find

most helpful.

EXPERIMENT 14-1: NARROWING THE SEARCH

Start with the --list-boots option, which lists all the boots during the time

period for which journal entries exist. Note that the journalctl.conf file

may specify that journal entries are discarded after they reach a certain age

or after the storage device (HDD/SSD) space taken by the journals reaches a

specified maximum amount.

journalctl --list-boots
IDX BOOT ID FIRST
ENTRY LAST ENTRY
-11 25efa06423ef47bbbe67a067c012e186 Wed 2025-01-29
05:22:09 EST Wed 2025-01-29 10:29:23 EST
-10 f171387baed24cceb96a29036ad58907 Wed 2025-01-29
05:30:30 EST Wed 2025-01-29 12:12:51 EST
�-9 de8d4f0972e348718efbcadcad795e1d Wed 2025-01-29
12:13:11 EST Wed 2025-01-29 21:14:12 EST
�-8 2faa4a8969884412b07d466d4a2a3c22 Wed 2025-01-29
21:14:32 EST Wed 2025-01-29 21:15:06 EST
 �-7 75cdc4bc316147a1bc154a9fbfd358bf Wed 2025-01-29
16:16:19 EST Thu 2025-01-30 09:00:43 EST

Chapter 14 Getting More Out of the Journal

374

 �-6 92a9a9e7872d4644aa3fc4cd0b4373b7 Thu 2025-01-30
09:00:59 EST Fri 2025-01-31 08:05:23 EST
 �-5 16d5be20d5974f81af174beb8e5936a3 Fri 2025-01-31
03:19:26 EST Fri 2025-01-31 10:04:41 EST
 �-4 1d43891f271c4310b0b63b17d7c9dc31 Fri 2025-01-31
10:05:01 EST Fri 2025-01-31 10:30:15 EST
 �-3 dcc5cd008dc64cbaa5a5ad414be7db1f Fri 2025-01-31
16:16:58 EST Fri 2025-01-31 21:21:35 EST
 �-2 0dc99b59d8e9467d97552d8e8451a12b Fri 2025-01-31
21:21:53 EST Fri 2025-01-31 21:30:06 EST
 �-1 638be7f2cd034ab998a79c23a866d9c9 Fri 2025-01-31
21:30:26 EST Fri 2025-01-31 21:31:45 EST
 �0 51ddf40f75bd42bcb0d8631e6bdabf47 Fri 2025-01-31
16:33:10 EST Sat 2025-02-01 08:20:25 EST

The Index and ID for the most recent boot appears at the bottom of the list.

The ID is the long, random hex number.

You can use this data to view the journals for a specific boot. This can also be

specified using the boot offset number in the left-most column or the boot ID

in the second column. This command displays the journal for the boot instance

with the offset of -2—the second previous boot from the current one.

journalctl -b -2
Jan 31 21:21:53 testvm1.both.org kernel: Linux version
6.12.11-200.fc41.x86_64 (mockbuild@8c05b49e2e66460390f7ce4
d04d4f464) (gcc (GCC) 14.2.1 20250110 (Red Hat>
Jan 31 21:21:53 testvm1.both.org kernel: Command line:
BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.12.11-200.fc41.x86_64
root=/dev/mapper/vg01-root ro rd.lvm.lv=vg01/root >
Jan 31 21:21:53 testvm1.both.org kernel: BIOS-provided
physical RAM map:

Chapter 14 Getting More Out of the Journal

375

Jan 31 21:21:53 testvm1.both.org kernel: BIOS-e820: [mem
0x0000000000000000-0x000000000009fbff] usable
Jan 31 21:21:53 testvm1.both.org kernel: BIOS-e820: [mem
0x000000000009fc00-
<SNIP>

Or you could use the UUID for the desired boot. The offset numbers change

after each boot, but the UUID does not.

journalctl -b 0dc99b59d8e9467d97552d8e8451a12b

The -u option allows you to select specific units to examine. You can use a

unit name or a pattern for matching, and you can use this option multiple

times to match multiple units or patterns. In this example, I used it in

combination with -b to show chronyd journal entries for the current boot:

journalctl -u chronyd -b
Jan 31 16:33:23 testvm1.both.org systemd[1]: Starting
chronyd.service - NTP client/server...
Jan 31 21:33:25 testvm1.both.org chronyd[1166]: chronyd
version 4.6.1 starting (+CMDMON +NTP +REFCLOCK +RTC
+PRIVDROP +SCFILTER +SIGND +ASYNCDNS +NTS +SECHASH >
Jan 31 21:33:25 testvm1.both.org chronyd[1166]: Using
leap second list /usr/share/zoneinfo/leap-seconds.list
Jan 31 21:33:25 testvm1.both.org chronyd[1166]: Frequency
 -0.417 +/- 0.545 ppm read from /var/lib/chrony/drift
Jan 31 21:33:25 testvm1.both.org chronyd[1166]: Loaded
seccomp filter (level 2)
Jan 31 21:33:25 testvm1.both.org systemd[1]: Started
chronyd.service - NTP client/server.
Jan 31 21:33:28 testvm1.both.org chronyd[1166]: Could not
add source 192.168.0.52 : Already in use
Jan 31 21:33:33 testvm1.both.org chronyd[1166]: Selected
source 192.168.0.52 (yorktown.both.org)

Chapter 14 Getting More Out of the Journal

376

Jan 31 21:33:33 testvm1.both.org chronyd[1166]: System
clock TAI offset set to 37 seconds
Feb 01 08:07:25 testvm1.both.org chronyd[1166]: Could not
add source 192.168.0.52 : Already in use

Suppose you want to look at events that were recorded between two arbitrary

times. You can also use -S or --since and -U or --until to specify the

beginning and ending times. The following command displays journal entries

starting at 15:36:00 on July 24, 2020, through the current time:

journalctl -S "2025-01-24 15:36:00"

And this command displays all journal entries starting at 15:36:00 on January

24, 2025, until 16:00:00 on January 25:

journalctl -S "2025-01-24 15:36:00" -U "2020-01-25
16:00:00"

This command combines -S, -U, and -u to give journal entries for the

NetworkManager service unit starting at 15:36:00 on July 24, 2020, until

16:00:00 on July 25:

journalctl -S "2020-07-24 15:36:00" -U "2020-07-25
16:00:00" -u NetworkManager

Some syslog facilities, such as cron, auth, mail, daemon, user, and more, can

be viewed with the --facility option. You can use --facility=help to

list the available facilities. In this example, the mail facility is not the Sendmail

service that would be used for an email service, but the local client used by

Linux to send email to root as event notifications. Sendmail actually has two

parts: the server, which (for Fedora and related distributions) is not installed

by default, and the client, which is always installed so that it can be used to

deliver system emails to local recipients, especially root:

journalctl --facility=mail

Chapter 14 Getting More Out of the Journal

377

�A Troubleshooting Example
I didn’t originally consider systemd to be a troubleshooting tool, but when

I encountered a problem on my web server, my growing knowledge of

systemd and some of its features helped me locate and circumvent the

problem.

Some of you will say that systemd itself is the cause of this problem,

and, based on what I know now, I might agree with you. However, I had

similar types of problems with SystemV. No software is perfect, and

neither systemd nor SystemV is an exception, but systemd provides far

more information for problem-solving than SystemV ever offered. I find

that important and a major factor in why I find systemd to be superior to

SystemV. So let’s see how that works with a problem I encountered a few

years ago.

�Determining the Problem
The problem was that my server, yorktown, which provides DNS, DHCP,

NTP, HTTPD, and Sendmail email services for my home office network,

failed to start the Apache HTTPD daemon during normal startup. I had to

start it manually after I realized that it was not running. The problem had

been going on for some time, and I finally got around to trying to fix it.

The first step to finding the source of this problem was to determine

the HTTPD service’s status.

systemctl status httpd
• httpd.service - The Apache HTTP Server
 Loaded: �loaded (/usr/lib/systemd/system/httpd.service;

enabled; vendor preset: disabled)
 Active: �failed (Result: exit-code) since Thu 2020-04-16

11:54:37 EDT; 15min ago
 Docs: man:httpd.service(8)

Chapter 14 Getting More Out of the Journal

378

 Process: �1101 ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
(code=exited, status=1/FAILURE)

 Main PID: 1101 (code=exited, status=1/FAILURE)
 Status: "Reading configuration..."
 CPU: 60ms

Apr 16 11:54:35 yorktown.both.org systemd[1]: Starting The
Apache HTTP Server...
Apr 16 11:54:37 yorktown.both.org httpd[1101]: (99)Cannot
assign requested address: AH00072: make_sock: could not bind to
address 192.168.0.52:80
Apr 16 11:54:37 yorktown.both.org httpd[1101]: no listening
sockets available, shutting down
Apr 16 11:54:37 yorktown.both.org httpd[1101]: AH00015: Unable
to open logs
Apr 16 11:54:37 yorktown.both.org systemd[1]: httpd.service:
Main process exited, code=exited, status=1/FAILURE
Apr 16 11:54:37 yorktown.both.org systemd[1]: httpd.service:
Failed with result 'exit-code'.
Apr 16 11:54:37 yorktown.both.org systemd[1]: Failed to start
The Apache HTTP Server.
This status information is one of the systemd features that
I find much more useful than anything SystemV offers. The
amount of helpful information here leads me easily to a logical
conclusion that takes me in the right direction. All I ever got
from the old chkconfig command is whether or not the service
is running and the process ID (PID) if it is. That is not very
helpful.

The key entry in this status report shows that HTTPD cannot bind to

the IP address, which means it cannot accept incoming requests. This

indicates that the network is not starting fast enough to be ready for the

HTTPD service to bind to the IP address because the IP address has not yet

Chapter 14 Getting More Out of the Journal

379

been set. This is not supposed to happen, so I explored my network service

systemd startup configuration files; all appeared to be correct with the

right “after” and “requires” statements. Here is the /lib/systemd/system/
httpd.service file from my server:

Modifying this file in-place is not recommended,
because changes
will be overwritten during package upgrades.
To customize the
behaviour, run "systemctl edit httpd" to create an
override unit.

For example, to pass additional options (such as
-D definitions) to
the httpd binary at startup, create an override unit
(as is done by
systemctl edit) and enter the following:

[Service]
Environment=OPTIONS=-DMY_DEFINE

[Unit]
Description=The Apache HTTP Server
Wants=httpd-init.service
After=network.target remote-fs.target nss-lookup.target httpd-
init.service
Documentation=man:httpd.service(8)

[Service]
Type=notify
Environment=LANG=C

ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
Send SIGWINCH for graceful stop

Chapter 14 Getting More Out of the Journal

380

KillSignal=SIGWINCH
KillMode=mixed
PrivateTmp=true

[Install]
WantedBy=multi-user.target

The httpd.service unit file explicitly specifies that it should load after

the network.target and the httpd-init.service (among others). I tried

to find all of these services using the systemctl list-units command and

searching for them in the resulting data stream. All were present and

should have ensured that the HTTPD service did not load before the

network IP address was set.

�First Solution
A bit of searching on the Internet confirmed that others had encountered

similar problems with HTTPD and other services. This appears to happen

because one of the required services indicates to systemd that it has

finished its startup—but it actually spins off a child process that has not

finished. After a bit more searching, I came up with a circumvention.

I couldn’t figure out why the IP address was taking so long to be

assigned to the network interface card. So, I thought that if I could delay

the start of the HTTPD service by a reasonable amount of time, the IP

address would be assigned by that time.

Fortunately, the /lib/systemd/system/httpd.service file above

provides some direction. Although it says not to alter it, it does indicate

how to proceed: use the command systemctl edit httpd, which

automatically creates a new file (/etc/systemd/system/httpd.service.
d/override.conf) and opens the GNU Nano1 editor. If you are not familiar

with Nano, be sure to look at the hints at the bottom of the Nano interface.

1 Nano Editor home page, https://www.nano-editor.org/

Chapter 14 Getting More Out of the Journal

https://www.nano-editor.org/

381

I added the following text to the new file and saved it:

Trying to delay the startup of httpd so that the network is
fully up and running so that httpd can bind to the correct
IP address
#
By David Both, 2020-04-16

[Service]
ExecStartPre=/bin/sleep 30

The [Service] section of this override file contains a single line that

delays the start of the HTTPD service by 30 seconds. The following status

command shows the service status during the wait time:

systemctl status httpd
• httpd.service - The Apache HTTP Server
 Loaded: �loaded (/usr/lib/systemd/system/httpd.service;

enabled; vendor preset: disabled)
 Drop-In: /etc/systemd/system/httpd.service.d
 └─override.conf
 /usr/lib/systemd/system/httpd.service.d
 └─php-fpm.conf
 Active: �activating (start-pre) since Thu 2020-04-16 12:14:29

EDT; 28s ago
 Docs: man:httpd.service(8)
Cntrl PID: 1102 (sleep)
 Tasks: 1 (limit: 38363)
 Memory: 260.0K
 CPU: 2ms
 CGroup: /system.slice/httpd.service
 └─1102 /bin/sleep 30

Chapter 14 Getting More Out of the Journal

382

Apr 16 12:14:29 yorktown.both.org systemd[1]: Starting The
Apache HTTP Server...
Apr 16 12:15:01 yorktown.both.org systemd[1]: Started The
Apache HTTP Server.
[root@yorktown ~]#

And this command shows the status of the HTTPD service after

the 30-second delay expires. The service is up and running correctly.

systemctl status httpd
• httpd.service - The Apache HTTP Server
 Loaded: �loaded (/usr/lib/systemd/system/httpd.service;

enabled; vendor preset: disabled)
 Drop-In: /etc/systemd/system/httpd.service.d
 └─override.conf
 /usr/lib/systemd/system/httpd.service.d
 └─php-fpm.conf
 Active: �active (running) since Thu 2020-04-16 12:15:01 EDT;

1min 18s ago
 Docs: man:httpd.service(8)
 Process: �1102 ExecStartPre=/bin/sleep 30 (code=exited,

status=0/SUCCESS)
 Main PID: 1567 (httpd)
 Status: �"Total requests: 0; Idle/Busy workers

100/0;Requests/sec: 0; Bytes served/sec: 0 B/sec"
 Tasks: 213 (limit: 38363)
 Memory: 21.8M
 CPU: 82ms
 CGroup: /system.slice/httpd.service
 ├─1567 /usr/sbin/httpd -DFOREGROUND
 ├─1569 /usr/sbin/httpd -DFOREGROUND
 ├─1570 /usr/sbin/httpd -DFOREGROUND

Chapter 14 Getting More Out of the Journal

383

 ├─1571 /usr/sbin/httpd -DFOREGROUND
 └─1572 /usr/sbin/httpd -DFOREGROUND

Apr 16 12:14:29 yorktown.both.org systemd[1]: Starting The
Apache HTTP Server...
Apr 16 12:15:01 yorktown.both.org systemd[1]: Started The
Apache HTTP Server.

I could have experimented to see if a shorter delay would work as well,

but my system is not that critical, so I decided not to. It works reliably as it

is, so I am happy. Because I gathered all this information, I reported it to

Red Hat Bugzilla as Bug 1825554. I believe that it is much more productive

to report bugs than it is to complain about them. It’s also a great way to

contribute to open source.

�The Better Solution
A couple days after reporting this as a bug, I received a response indicating

that systemd is just the manager, and if HTTPD needs to be ordered after

some requirements are met, it needs to be expressed in the unit file. The

response pointed me to the httpd.service man page. I wish I had found

this earlier because it is a better solution than the one I came up with. This

solution is explicitly targeted to the prerequisite target unit rather than a

somewhat random delay.

Here’s the relevant excerpt from the httpd.service man page:2

Starting the service at boot time

The httpd.service and httpd.socket units are

disabled by default. To start the httpd service at boot

time, run: systemctl enable httpd.service. In the

2 The httpd.service man page, https://www.mankier.com/8/httpd.service#
Description-Starting_the_service_at_boot_time

Chapter 14 Getting More Out of the Journal

https://www.mankier.com/8/httpd.service#Description-Starting_the_service_at_boot_time
https://www.mankier.com/8/httpd.service#Description-Starting_the_service_at_boot_time

384

default configuration, the httpd daemon will accept

connections on port 80 (and, if mod_ssl is installed,

TLS connections on port 443) for any configured

IPv4 or IPv6 address.

If httpd is configured to depend on any specific

IP address (for example, with a “Listen” directive)

which may only become available during start-up,

or if httpd depends on other services (such as a

database daemon), the service must be configured

to ensure correct start-up ordering.

For example, to ensure httpd is only running after

all configured network interfaces are configured,

create a drop-in file (as described above) with the

following section:

[Unit]
After=network-online.target
Wants=network-online.target

I still think this is a bug because it is quite common—at least in my

experience—to use a Listen directive in the httpd.conf configuration

file. I have always used Listen directives, even on hosts with only a single

IP address, and it is clearly necessary on hosts with multiple network

interface cards (NICs) and Internet protocol (IP) addresses. Adding the

lines above to the httpd.service default file would not cause problems for

configurations that do not use a Listen directive and would prevent this

problem for those that do.

In the meantime, I use the suggested solution.

Note A lthough the bug I reported was closed as “notabug,” the
problem appears to have been resolved.

Chapter 14 Getting More Out of the Journal

385

�Summary
In this chapter, we looked at using the journalctl command to extract

various types of data from the systemd journal in different formats. It also

explored managing journal files and how to add entries to the log from

commands and scripts.

The systemd journal system provides a significant amount of metadata

and context for entries compared to the old syslogd program. This

additional data and the context available from the other journal entries

around the time of an incident can help the SysAdmin locate and resolve

problems much faster than having to search multiple syslog files.

The journalctl command meets the Unix philosophy that programs

should do one thing and do it well. The only thing journalctl does is

extract data from the journal and provide many options for selecting and

formatting that data. At about 85K, it is not very big. Of course, that does

not include shared libraries, but those are, by definition, shared with other

programs.

We explored a problem I had with starting the Apache HTTPD service

on my server. It leads you through the problem determination steps I took

and shows how I used systemd to assist. I also covered the circumvention I

implemented using systemd and the better solution that followed from my

bug report.

You should now have enough information to use the systemd journal

more effectively in problem determination. If you would like to know more

than what I’ve covered here, look in the man pages for journalctl and

systemd-cat.

Chapter 14 Getting More Out of the Journal

386

�Exercises
Complete the following exercises to finish this chapter:

	 1.	 What advantages do the systemd journals provide

over the syslog log files?

	 2.	 Display the contents of the journal from the fourth

previous boot.

	 3.	 What index number is the fourth previous boot?

	 4.	 View all NetworkManager journal entries in the

current boot.

	 5.	 How long after boot did NetworkManager finish

starting?

	 6.	 What network interface devices does

NetworkManager see?

	 7.	 How many journal files are currently kept by the

journal service?

	 8.	 If you’re using a Linux host on which it’s safe to do

so—a non-production system—manually rotate the

journal files.

Chapter 14 Getting More Out of the Journal

387© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_15

CHAPTER 15

Analyzing
systemd Startup
and Configuration

�Objectives
In this chapter, you will learn to

•	 Use systemd tools to analyze the Linux startup

sequence

•	 Determine the length of time spent in BIOS boot before

Linux startup

•	 Determine which services and systemd units are taking

the most time during startup

•	 Create and interpret graphs to analyze the Linux boot

and startup in detail

•	 Verify the correct syntax of systemd unit files

•	 Analyze the security status of systemd service unit files

https://doi.org/10.1007/979-8-8688-1328-3_15#DOI

388

�Overview
One of our jobs as SysAdmins is to analyze the performance of the systems

we support and to find and resolve problems that cause poor performance

and long startup times. We also need to check other aspects of systemd

configuration and usage.

The systemd system provides the systemd-analyze tool that can

help us discover performance and other important systemd information.

We have already used systemd-analyze earlier in this chapter to analyze

timestamps and time spans for use in systemd timers, but it has other

interesting and valuable uses as well. We will explore some of those uses in

this section.

�Linux Startup
The Linux startup sequence is a good place to begin our explorations

because many of the functions provided by the systemd-analyze tool are

targeted at startup. Before we begin, however, it is important to understand

the difference between boot and startup, so I will say it again, here. The

boot sequence starts with the BIOS power-on self-test (POST) and ends

when the kernel is finished loading and takes control of the host system,

which is the beginning of startup and the point at which the systemd

journal begins.

The results in this section are all from my primary workstation

which is much more interesting than those from a virtual machine. This

workstation consists of an ASUS TUF X299 Mark 2 motherboard, an Intel

i9-7960X CPU with 16 cores and 32 CPUs (threads), and 64GB of RAM.

There are several options we can use to examine the startup sequence.

The simplest form of the systemd-analyze command displays a simple

overview of the amount of time spent in each of the main sections

of startup, the kernel startup, loading and running initrd which is a

Chapter 15 Analyzing systemd Startup and Configuration

389

temporary system image that is used to initialize some hardware and

mount the / (root) filesystem, and user space in which all of the programs

and daemons required to bring the host up to a usable state are loaded. If

no sub-command is passed to the command, systemd-analyze time is

implied.

�Basic Analysis
As mentioned above, I performed this experiment on my primary

workstation which provides a more realistic view of a physical host.

However, you should perform this experiment on your VM.

Unless otherwise noted, all commands in this chapter can be executed

by a non-root user.

EXPERIMENT 15-1: USING SYSTEMD-ANALYZE

This command performs a very basic analysis that looks at the overall times

for each stage of boot and startup. This can be done as a non-root user.

$ systemd-analyze
Startup finished in 53.951s (firmware) + 6.606s (loader) +
2.061s (kernel) + 5.956s (initrd) + 8.883s (userspace) =
1min 17.458s
graphical.target reached after 8.850s in userspace.

The most notable data in this output is the amount of time spent in firmware

(UEFI BIOS) at almost 57 seconds. None of my other physical systems take

anywhere near as long. My System76 Oryx Pro laptop only spends 7.216

seconds in BIOS, and all of my home-built systems take a bit less than 10

seconds. After some online searches, I found that this ASUS motherboard is

known for its inordinately long BIOS boot time.

Chapter 15 Analyzing systemd Startup and Configuration

390

This is exactly the type of information that tools like this are intended to

provide.

Be aware that the firmware data is not shown for all hosts. I have a 13-year-

old Dell Optiplex 755 for which systemd-analyze does not display BIOS

times. My unscientific experiments lead me to the hypothesis that BIOS data is

shown for Intel processors only at gen 9 or above. But that could be incorrect. I

have no AMD processors to check.

This overview of the boot startup process is interesting and provides

good though limited information, but there is much more information

available about startup itself.

�The Blame Game
As a SysAdmin, I always want to determine the true culprit, the root cause,

of a problem. That’s the only way we can really be sure of preventing that

same problem in the future.

EXPERIMENT 15-2: ASSIGNING BLAME

We can use systemd-analyze blame to discover which systemd units take

the most time to initialize. This provides much more detail and enables us to

see what portions of the startup process take the most time.

The results are displayed in order by the amount of time they took to initialize

from highest to lowest. You can do this as a non-root user.

Chapter 15 Analyzing systemd Startup and Configuration

391

$ systemd-analyze blame
 2min 30.408s fstrim.service
 33.971s vboxdrv.service
 �5.832s dev-disk-by\x2dpartuuid-4212eea1\x2d96d0\

x2dc341\x2da698\x2d18a0752f034f.device
 5.832s dev-disk-by\x2ddiskseq-1\x2dpart1.device
 5.832s dev-sda1.device
<SNIP – removed lots of entries with increasingly
small times>

Because many of these services start in parallel, the numbers from this

command may add up to equal significantly more than the total given by

systemd-analyze time for everything that comes after the BIOS. The number

of units that can truly start in parallel is determined by the number of CPUs in

your host.

The data from this command can provide indicators of which services we

might look at to improve boot times. Services that are not used can be

disabled. The fstrim and vboxdrv services take a large amount of time during

the startup sequence on my workstation. You will see different results for your

VMs. If you have access to a physical host that runs a Linux distribution with

systemd, try this to see what that looks like.

�Critical Chain
Like the critical path in project management, the critical chain shows the

time-critical chain of events that took place during startup. These are the

systemd units you want to look at if the startup is slow—they are the ones

that would be causing the delays. This tool does not display all units that

started, only those in this critical chain of events.

Chapter 15 Analyzing systemd Startup and Configuration

392

Tip O n a terminal that supports color—which most of
today’s terminal emulators do—the units that cause delays are
highlighted in red.

EXPERIMENT 15-3: DETERMINE THE CRITICAL CHAIN

I have used this tool on two of my physical hosts and on my own StudentVM1

host, so we can compare them. The first is from my primary workstation.

$ systemd-analyze critical-chain
The time when unit became active or started is printed after
the "@" character.
The time the unit took to start is printed after the "+"
character.

graphical.target @8.850s
└─multi-user.target @8.849s
 └─vboxweb-service.service @8.798s +38ms
 └─network-online.target @8.776s
 └─NetworkManager-wait-online.service @4.932s +3.843s
 └─NetworkManager.service @4.868s +39ms
 └─network-pre.target @4.850s
 └─dkms.service @3.438s +1.411s
 └─basic.target @3.409s
 └─dbus-broker.service @3.348s +55ms
 └─dbus.socket @3.309s
 └─sysinit.target @3.267s
 └─�systemd-binfmt.service

@2.814s +452ms

Chapter 15 Analyzing systemd Startup and Configuration

393

 └─�proc-sys-fs-binfmt_misc.mount
@3.232s +21ms

 └─�proc-sys-fs-binfmt_misc.
automount @967ms

The numbers with “@” preceding them show the absolute number of seconds

since startup began at which the unit becomes active. The numbers preceded

by “+” show the amount of time it takes for the unit to start.

Among others, the vboxweb-service.service was highlighted as a blockage

on my workstation. If it were not needed, I could disable it and speed up the

overall start time. However, that doesn’t mean that another service won’t take

its place with a startup that is only slightly faster. I live with it because I need

VirtualBox so I can run the VMs I use to create the experiments for this course

and other testing.

Here are the results from my System76 Oryx Pro laptop:

$ systemd-analyze critical-chain
The time when unit became active or started is printed after
the "@" character.
The time the unit took to start is printed after the "+"
character.

graphical.target @36.899s
└─multi-user.target @36.899s
 └─vboxweb-service.service @36.859s +38ms
 └─vboxdrv.service @2.865s +33.971s
 └─basic.target @2.647s
 └─dbus-broker.service @2.584s +60ms
 └─dbus.socket @2.564s
 └─sysinit.target @2.544s
 └─systemd-resolved.service @2.384s +158ms
 └─�systemd-tmpfiles-setup.service

@2.290s +51ms

Chapter 15 Analyzing systemd Startup and Configuration

394

 └─�systemd-journal-flush.service
@2.071s +193ms

 └─var.mount @1.960s +52ms
 └─�systemd-fsck@dev-mapper-vg01\x2dvar.

service @1.680s +171ms
 └─�dev-mapper-vg01\x2dvar.

device @1.645s

In this example, the vboxdrv.service and vboxweb-service.service both take a

good bit of startup time.

This next example is for another VM host. Compare this output to your VM and

see how much it differs.

$ systemd-analyze critical-chain
The time when unit became active or started is printed after
the "@" character.
The time the unit took to start is printed after the "+"
character.

graphical.target @56.173s
└─multi-user.target @56.173s
 └─plymouth-quit-wait.service @51.543s +4.628s
 └─systemd-user-sessions.service @51.364s +93ms
 └─remote-fs.target @51.347s
 └─remote-fs-pre.target @51.347s
 └─nfs-client.target @42.954s
 └─gssproxy.service @41.430s +1.522s
 └─network.target @41.414s
 └─NetworkManager.service @40.803s +609ms
 └─network-pre.target @40.793s
 └─firewalld.service @24.867s +15.925s
 └─polkit.service @19.081s +5.568s
 └─basic.target @18.909s

Chapter 15 Analyzing systemd Startup and Configuration

395

 └─�dbus-broker.service
@17.886s +1.015s

 └─dbus.socket @17.871s
 └─sysinit.target @17.852s
 └─�systemd-resolved.service

@16.872s +978ms
 └─�systemd-tmpfiles-setup.

service @16.265s +272ms
 └─�systemd-journal-

flush.service
@13.764s +2.493s

 └─�var.mount
@13.013s +593ms

 └─�systemd-fsck@dev-
mapper-fedora_
studentvm1\
x2dvar.service
@11.077s +1.885s

 └─�local-fs-pre.
target @11.056s

 └─�lvm2-monitor.
service
@5.803s
+5.252s

 └─�dm-event.
socket
@5.749s

 └─system.slice
 └─-.slice

I was surprised at the long chain here, but it’s probably because there was

no single service that took up a lot of time, like VirtualBox, and which hid the

others, thus removing them from the critical chain.

Chapter 15 Analyzing systemd Startup and Configuration

396

�System State
You may sometimes need to determine the current state of the system. The

systemd-analyze dump command dumps a massive amount of data about

the current system state.

EXPERIMENT 15-4: ANALYZE THE STATE OF THE SYSTEM

This starts with a list of the primary boot timestamps and a list of each

systemd unit and a complete description of the state of each.

$ systemd-analyze dump
Manager: systemd 253 (253.2-1.fc38)
Features: +PAM +AUDIT +SELINUX -APPARMOR +IMA +SMACK +SECCOMP
 -GCRYPT +GNUTLS +OPENSSL +ACL +BLKID +CURL +ELFUTILS +FIDO2
+IDN2 -IDN ->
Timestamp firmware: 1min 557.292ms
Timestamp loader: 6.606226s
Timestamp kernel: Sun 2023-04-30 17:09:49 EDT
Timestamp initrd: Sun 2023-04-30 17:09:51 EDT
Timestamp userspace: Sun 2023-04-30 17:09:57 EDT
Timestamp finish: Sun 2023-04-30 21:10:06 EDT
Timestamp security-start: Sun 2023-04-30 17:09:57 EDT
Timestamp security-finish: Sun 2023-04-30 17:09:57 EDT
Timestamp generators-start: Sun 2023-04-30 21:09:57 EDT
Timestamp generators-finish: Sun 2023-04-30 21:09:57 EDT
Timestamp units-load-start: Sun 2023-04-30 21:09:57 EDT
Timestamp units-load-finish: Sun 2023-04-30 21:09:58 EDT
Timestamp units-load: Tue 2023-05-02 13:30:41 EDT
Timestamp initrd-security-start: Sun 2023-04-30 17:09:51 EDT
Timestamp initrd-security-finish: Sun 2023-04-30 17:09:51 EDT
Timestamp initrd-generators-start: Sun 2023-04-30

Chapter 15 Analyzing systemd Startup and Configuration

397

17:09:51 EDT
Timestamp initrd-generators-finish: Sun 2023-04-30
17:09:51 EDT
Timestamp initrd-units-load-start: Sun 2023-04-30
17:09:51 EDT
Timestamp initrd-units-load-finish: Sun 2023-04-30
17:09:51 EDT
-> Unit logwatch.service:
 Description: Log analyzer and reporter
 Instance: n/a
 Unit Load State: loaded
 Unit Active State: inactive
 State Change Timestamp: Wed 2023-05-03 00:00:20 EDT
 Inactive Exit Timestamp: Wed 2023-05-03 00:00:05 EDT
 Active Enter Timestamp: n/a
 Active Exit Timestamp: n/a
<SNIP – Deleted a bazillion lines of output>

On my main workstation, this command generated a stream of 59,859 lines

and about 1.75MB. This command is very fast, so you don’t need to wait for

the results. It does call the default pager, so you can page through the data. I

do like the wealth of detail provided for the various connected devices such

as storage. Each systemd unit has a section with details such as modes for

various runtime, cache, and log directories, the command line used to start the

unit, the PID, and the start timestamp, as well as memory and file limits.

There’s another option, systemd-analyze --user dump, that displays

information about the internal state of the user manager. systemd user

instances are instances of systemd that are used to manage and control

the resources for the hierarchy of processes belonging to each user. The

processes for each user are part of a control group.

Chapter 15 Analyzing systemd Startup and Configuration

398

$ systemd-analyze --user dump
Manager: systemd 256.12 (256.12-1.fc41)
Features: +PAM +AUDIT +SELINUX -APPARMOR +IMA +SMACK +SECCOMP
 -GCRYPT +GNUTLS +OPENSSL +ACL +BLKID +CURL +ELFUTILS +FIDO>
Timestamp userspace: Fri 2025-03-14 09:48:17 EDT
Timestamp finish: Fri 2025-03-14 09:48:17 EDT
Timestamp generators-start: Fri 2025-03-14 09:48:17 EDT
Timestamp generators-finish: Fri 2025-03-14 09:48:17 EDT
Timestamp units-load-start: Fri 2025-03-14 09:48:17 EDT
Timestamp units-load-finish: Fri 2025-03-14 09:48:17 EDT
Timestamp units-load: Sat 2025-03-15 14:37:50 EDT
Subscribed: :1.206
Subscribed: :1.2
→ Unit blockdev@dev-mapper-vg01\x2dusr.target:
Description: blockdev@dev-mapper-vg01\x2dusr.target
Instance: dev-mapper-vg01\x2dusr
Unit Load State: not-found
Unit Active State: inactive
State Change Timestamp: Fri 2025-03-14 09:48:22 EDT
Inactive Exit Timestamp: n/a
Active Enter Timestamp: n/a
Active Exit Timestamp: n/a
Inactive Enter Timestamp: n/a
May GC: yes
Need Daemon Reload: no
Transient: no
Perpetual: no
Garbage Collection Mode: inactive
Before: usr.mount (destination-mountinfo)
ReferencedBy: usr.mount (destination-mountinfo)
→ Unit background.slice:

Chapter 15 Analyzing systemd Startup and Configuration

399

Description: User Background Tasks Slice
Instance: n/a
Unit Load State: loaded
Unit Active State: active
State Change Timestamp: Fri 2025-03-14 09:48:22 EDT
Inactive Exit Timestamp: Fri 2025-03-14 09:48:22 EDT
Active Enter Timestamp: Fri 2025-03-14 09:48:22 EDT
Active Exit Timestamp: n/a
Inactive Enter Timestamp: n/a
<SNIP>

Take some time to explore the data provided by these commands. I found a lot

of interesting information here.

�Analytic Graphs
Most pointy-haired bosses (PHBs)—and many good managers—find

pretty graphs easy to read and easier to understand than the text-based

system performance data I usually prefer to work with. Sometimes even I

like a good graph, and systemd-analyze provides the capability to display

boot and startup data in an *.svg vector graphics chart.

EXPERIMENT 15-5: CREATING ANALYTIC GRAPHS

The command below generates a vector graphics file that displays the events

that take place during boot and startup. It takes a few seconds to generate

this file.

$ systemd-analyze plot > /tmp/bootup.svg

Chapter 15 Analyzing systemd Startup and Configuration

400

The svg file created by the preceding command is a text file that defines a

series of graphic vectors that are used by a number of applications to generate

a graph. The svg files created by this command can be processed to create

an image by a number of svg-capable applications such as Image Viewer,

Ristretto, Okular, Eye of Mate, LibreOffice Draw, and others.

I used LibreOffice Draw to render the graph. The graph is huge, and you need

to zoom in considerably to make out any detail. Figure 15-1 shows a small

portion of the resulting graph.

Figure 15-1.  The bootup.svg file displayed in LibreOffice Draw

The bootup sequence is to the left of the zero (0) point on the time line in

the graph, and the startup sequence is to the right of zero. This small portion

shows the kernel and initrd and the processes started by initrd.

This graph shows at a glance what started when, how long it took to start up,

and the major dependencies. The critical path is highlighted in red.

Chapter 15 Analyzing systemd Startup and Configuration

401

Another command that generates graphical output is the systemd-analyze

plot which generates textual dependency graph descriptions in dot format.

The resulting data stream is then piped through the dot utility which is part of

a family of programs that can be used to generate vector graphic files from

various types of data. The resulting svg file can be viewed by same svg tools

listed previously.

First, generate the file. This took almost nine minutes on my primary

workstation.

$ time systemd-analyze dot | dot -Tsvg > /tmp/test.svg
 Color legend: black = Requires
 dark blue = Requisite
 dark grey = Wants
 red = Conflicts
 green = After
real 8m37.544s
user 8m35.375s
sys 0m0.070s
[root@david ~]#

I won’t reproduce the resulting graph here because it’s pretty much

spaghetti. But you should definitely try this and view the result yourself to see

what I mean.

�Conditionals
One of the more interesting yet somewhat generic capabilities I discovered

while reading the man page for systemd-analyze(1) is the condition sub-

command. This condition sub-command can be used to test the various

conditions and asserts that can be used in systemd unit files.

Chapter 15 Analyzing systemd Startup and Configuration

402

EXPERIMENT 15-6: USING CONDITIONALS TO TEST SYSTEMD UNIT FILES

This command can also be used in scripts to evaluate one or more conditions

and return a zero (0) if all are met or a 1 if any condition is not met. In either

case, it also spews text indicating its findings.

The example in the man page is a bit complex, but the one I have concocted

for this experiment is less so. It is testing for a kernel version greater than 5.1

and that the host is running on AC power. I have added the echo $? statement

to print the return code.

$ systemd-analyze condition 'ConditionACPower=|true'
'ConditionKernelVersion = >=5.1' ; echo $?
test.service: ConditionKernelVersion=>=5.1 succeeded.
test.service: ConditionACPower=|true succeeded.
Conditions succeeded.
0

The return code of zero (0) indicates that all conditions that were tested for

were met. The list of conditions and asserts can be found starting on about

line 600 on the systemd.unit(5) man page.

�Listing Configuration Files
I frequently find it useful to examine the content of systemd unit and other

configuration files. The systemd-analyze tool provides us with a means of

sending the contents of various configuration files to STDOUT.

Chapter 15 Analyzing systemd Startup and Configuration

403

EXPERIMENT 15-7: EXAMINING SYSTEMD CONFIGURATION FILES

Let’s start by looking at the display manager service. The cat-config sub-

command is used for this. The base directory for this command is /etc/.

[root@david ~]# systemd-analyze cat-config systemd/system/
display-manager.service
/etc/systemd/system/display-manager.service
[Unit]
Description=LXDM (Lightweight X11 Display Manager)
#Documentation=man:lxdm(8)
Conflicts=getty@tty1.service
After=systemd-user-sessions.service getty@tty1.service
plymouth-quit.service livesys-late.service
#Conflicts=plymouth-quit.service

[Service]
ExecStart=/usr/sbin/lxdm
Restart=always
IgnoreSIGPIPE=no
#BusName=org.freedesktop.lxdm

[Install]
Alias=display-manager.service
[root@david ~]#

I find that to be a lot of typing to do little more than a standard cat command.

It does, however, render the data stream with syntax colors that make the files

easier to read. The cat command doesn’t do that.

The syntax I do find a bit helpful is this next one. It can at least search out all

of the files with the specified pattern within the standard systemd locations.

Chapter 15 Analyzing systemd Startup and Configuration

404

$ systemctl cat basic*
/usr/lib/systemd/system/basic.target
SPDX-License-Identifier: LGPL-2.1-or-later
#
This file is part of systemd.
#
�systemd is free software; you can redistribute it and/or

modify it
�under the terms of the GNU Lesser General Public License

as published by
�the Free Software Foundation; either version 2.1 of the

License, or
(at your option) any later version.

[Unit]
Description=Basic System
Documentation=man:systemd.special(7)
Requires=sysinit.target
Wants=sockets.target timers.target paths.target slices.target
After=sysinit.target sockets.target paths.target slices.
target tmp.mount

We support /var, /tmp, /var/tmp, being on NFS, but we
don't pull in
remote-fs.target by default, hence pull them in explicitly
here. Note that we
require /var and /var/tmp, but only add a Wants= type
dependency on /tmp, as
we support that unit being masked, and this should not be
considered an error.
RequiresMountsFor=/var /var/tmp
Wants=tmp.mount

Chapter 15 Analyzing systemd Startup and Configuration

405

Both of these commands preface the contents of each file with a comment line

containing the full path and name of the file.

�Unit File Verification
After creating a new unit file, it can be helpful to verify that it is at least

syntactically correct. That is what the verify sub-command does. It can list

directives that are spelled incorrectly and call out missing service units.

EXPERIMENT 15-8: VERIFYING SYSTEMD UNIT FILES

The backup.service unit is one that I created, so it won’t be present on your

systems. For now, just know that this command works as it is supposed to.

systemd-analyze verify /etc/systemd/system/backup.service

Adhering to the Linux philosophy tenet, “silence is golden,” a lack of output

messages means that there are no errors in the scanned file.

�Security
The security sub-command checks the security level of specified services.

It only works on service units and not on other types of unit files. So let’s

check the NetworkManager service unit.

Chapter 15 Analyzing systemd Startup and Configuration

406

EXPERIMENT 15-9: SECURITY CHECKS

[root@david ~]# systemd-analyze security NetworkManager.service

NAME
 DESCRIPTION ..

× RootDirectory=/RootImage=
 Service runs within the host's root directory 0.1
 SupplementaryGroups=
 Service runs as root, option does not matter
 RemoveIPC=
 Service runs as root, option does not apply
× User=/DynamicUser=
 Service runs as root user 0.4
✓ NoNewPrivileges=
 Service processes may acquire new privileges 0.2
✓ CapabilityBoundingSet=~CAP_SYS_TIME
 �Service processes cannot change the system clock
✓ AmbientCapabilities=
 Service process does not receive ambient capabilities
× PrivateDevices=
 Service potentially has access to hardware devices 0.2
× ProtectClock=
 Service may write to the hardware clock or system clock 0.2

× CapabilityBoundingSet=~CAP_KILL
 Service may send UNIX signals to arbitrary processes 0.1
× ProtectKernelLogs=
 Service may read from or write to the kernel log ring buffer 0.2
<SNIP>

Chapter 15 Analyzing systemd Startup and Configuration

407

→ Overall exposure level for NetworkManager.service: 7.8
EXPOSED 🙁

lines 40-83/83 (END)

Yes, the emoji is part of the output. I ran this program against several services,

including my own backup service, and the results may differ, but the bottom

line seems to be mostly the same—EXPOSED or UNSAFE. But, of course, most

services need pretty much complete access to everything in order to perform

their work.

This tool would be very useful for checking and fixing user space service units

in security-critical environments. Developers will find it useful in identifying

the areas that they should concentrate on when securing services as much

as possible. I don’t think it has much to offer for most of us who work as

SysAdmins.

�Summary
This chapter explored the use of various tools that we can use to analyze

systemd startup. We learned how to analyze the boot and startup and to

determine which services were taking the longest to start.

We looked at using the critical chain and analytic graphics to

determine which services were the ones to be concerned with when

tuning startup performance. The systemd-analyze verify tool can be

used to ensure that unit files we create at least conform to syntactical and

functional constructs correct for systemd.

Security is always a concern, and we learned how to check the security

stance of systemd service unit files. This is an interesting exercise because

so many system services need to run as root or with elevated levels

of access.

Chapter 15 Analyzing systemd Startup and Configuration

408

�Exercises
Complete the following exercises to finish this chapter:

	 1.	 How long does your host take to get through

BIOS boot?

	 2.	 What two services take the longest to start?

	 3.	 Display any kernel messages that are Warning or

Info class.

	 4.	 Are there any Error class messages at all in the

journals?

Chapter 15 Analyzing systemd Startup and Configuration

409© David Both 2025
D. Both, systemd for Linux SysAdmins, https://doi.org/10.1007/979-8-8688-1328-3_16

CHAPTER 16

Why I Support
the systemd Plan to
Take Over the World

�Introduction
Over the last 15 years or so, I’ve read many articles and posts about how

systemd is trying to replace everything and take over everything in Linux. I

agree; it is taking over pretty much everything.

But not really “everything-everything.” Just “everything” in that middle

ground of services that lies between the kernel and things like the GNU

core utilities, graphical user interface desktops, and user applications.

Examining Linux’s structure is a way to explore this. Figure 16-1 shows

the three basic software layers found in the operating system. The bottom

is the Linux kernel; the middle layer consists of services that may perform

startup tasks, such as launching various other services like Network

Time Protocol (NTP), Dynamic Host Configuration Protocol (DHCP),

Domain Name System (DNS), secure shell (SSH), device management,

login services, gettys, NetworkManager, journal and log management,

https://doi.org/10.1007/979-8-8688-1328-3_16#DOI

410

logical volume management, printing, kernel module management, local

and remote filesystems, sound and video, display management, swap

space, system statistics collection, and much more. There are also tens of

thousands of new and powerful applications at the top layer.

Figure 16-1.  systemd and the services it manages with respect to the
kernel and application programs, including SysAdmin tools (David
Both, CC BY-SA 4.0)

This diagram, as well as the collective experience of many SysAdmins

over the last several years, makes it clear that systemd is indeed intended

to completely replace the old SystemV init system. But I also know that it

significantly extends the capabilities of the init system.

It is also important to recognize that, although Linus Torvalds rewrote

the Unix kernel as an exercise, he did nothing to change the middle layer

Chapter 16 Why I Support the systemd Plan to Take Over the World

411

of system services. He simply recompiled SystemV init to work with his

completely new kernel. SystemV is much older than Linux and has needed

a complete change to something totally new for decades.

So the kernel is new and is refreshed frequently through the leadership

of Torvalds and the work of thousands of programmers around the planet.

But until recently, there have been no significant enhancements to the init

system and management of system services.

In authoring systemd, Lennart Poettering1 has done for system services

what Linus Torvalds did for the kernel. Like Torvalds and the Linux kernel,

Poettering has become the leader and arbiter of what happens inside this

middle system services layer. And I like what I see.

�More Data for the Admin
The new capabilities of systemd include far more status information about

services, whether they’re running or not. I like having more information

about the services I am trying to monitor. For example, look at the DHCPD

service. Were I to use the SystemV command, service dhcpd status, I

would get a simple message that the service is running or stopped. Using

the systemd command, systemctl status dhcpd, I get much more useful

information.

This data is from the server on my personal network.

[root@yorktown ~]# systemctl status dhcpd
• dhcpd.service - DHCPv4 Server Daemon
 Loaded: �loaded (/usr/lib/systemd/system/dhcpd.service;

enabled; vendor preset: disabled)
 Active: �active (running) since Fri 2021-04-09 21:43:41

EDT; 4 days ago

1 Wikipedia, “Lennart Poettering,” https://en.wikipedia.org/wiki/
Lennart_Poettering

Chapter 16 Why I Support the systemd Plan to Take Over the World

https://en.wikipedia.org/wiki/Lennart_Poettering
https://en.wikipedia.org/wiki/Lennart_Poettering

412

 Docs: man:dhcpd(8)
 man:dhcpd.conf(5)
 Main PID: 1385 (dhcpd)
 Status: "Dispatching packets..."
 Tasks: 1 (limit: 9382)
 Memory: 3.6M
 CPU: 240ms
 CGroup: /system.slice/dhcpd.service
 �└─1385 /usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd.

conf -user dhcpd -group dhcpd --no-pid

Apr 14 20:51:01 yorktown.both.org dhcpd[1385]: DHCPREQUEST for
192.168.0.7 from e0:d5:5e:a2:de:a4 via eno1
Apr 14 20:51:01 yorktown.both.org dhcpd[1385]: DHCPACK on
192.168.0.7 to e0:d5:5e:a2:de:a4 via eno1
Apr 14 20:51:14 yorktown.both.org dhcpd[1385]: DHCPREQUEST for
192.168.0.8 from e8:40:f2:3d:0e:a8 via eno1
Apr 14 20:51:14 yorktown.both.org dhcpd[1385]: DHCPACK on
192.168.0.8 to e8:40:f2:3d:0e:a8 via eno1
Apr 14 20:51:14 yorktown.both.org dhcpd[1385]: DHCPREQUEST for
192.168.0.201 from 80:fa:5b:63:37:88 via eno1
Apr 14 20:51:14 yorktown.both.org dhcpd[1385]: DHCPACK on
192.168.0.201 to 80:fa:5b:63:37:88 via eno1
Apr 14 20:51:24 yorktown.both.org dhcpd[1385]: DHCPREQUEST for
192.168.0.6 from e0:69:95:45:c4:cd via eno1
Apr 14 20:51:24 yorktown.both.org dhcpd[1385]: DHCPACK on
192.168.0.6 to e0:69:95:45:c4:cd via eno1
Apr 14 20:52:41 yorktown.both.org dhcpd[1385]: DHCPREQUEST for
192.168.0.5 from 00:1e:4f:df:3a:d7 via eno1
Apr 14 20:52:41 yorktown.both.org dhcpd[1385]: DHCPACK on
192.168.0.5 to 00:1e:4f:df:3a:d7 via eno1
[root@yorktown ~]#

Chapter 16 Why I Support the systemd Plan to Take Over the World

413

Having all this information available in a single command is

empowering and simplifies problem determination for me. I get more

information right at the start. I not only see that the service is up and

running but also some of the most recent log entries.

Here is another example that uses a non-operating-system tool.

BOINC,2 the Berkeley Open Infrastructure Network Computing Client, is

used to create ad hoc supercomputers out of millions of home computers

around the world that are signed up to participate in the computational

stages of many types of scientific studies. I am signed up with the World

Community Grid3 and participate in studies about COVID-19, mapping

cancer markers, rainfall in Africa, and more.

The information from this command gives me a more complete picture

of how this service is faring.

[root@yorktown ~]# systemctl status boinc-client.service
• boinc-client.service - Berkeley Open Infrastructure Network
Computing Client
 Loaded: �loaded (/usr/lib/systemd/system/boinc-client.

service; enabled; vendor preset: disabled)
 Active: �active (running) since Fri 2021-04-09 21:43:41

EDT; 4 days ago
 Docs: man:boinc(1)
 Main PID: 1389 (boinc)
 Tasks: 18 (limit: 9382)
 Memory: 1.1G
 CPU: 1month 1w 2d 3h 42min 47.398s

2 UC Berkeley, BOINC, https://boinc.berkeley.edu/
3 World Community Grid, https://www.worldcommunitygrid.org/

Chapter 16 Why I Support the systemd Plan to Take Over the World

https://boinc.berkeley.edu/
https://www.worldcommunitygrid.org/

414

 CGroup: /system.slice/boinc-client.service
 ├─ 1389 /usr/bin/boinc
 ├─712591 ../../projects/www.worldcommunitygrid.
org/wcgrid_mcm1_map_7.43_x86_64-pc-linux-gnu -SettingsFile
MCM1_0174482_7101.txt -DatabaseFile dataset>
 ├─712614 ../../projects/www.worldcommunitygrid.
org/wcgrid_mcm1_map_7.43_x86_64-pc-linux-gnu -SettingsFile
MCM1_0174448_7280.txt -DatabaseFile dataset>
 ├─713275 ../../projects/www.worldcommunitygrid.
org/wcgrid_opn1_autodock_7.17_x86_64-pc-linux-gnu -jobs
OPN1_0040707_05092.job -input OPN1_0040707_050>
 ├─713447 ../../projects/www.worldcommunitygrid.
org/wcgrid_mcm1_map_7.43_x86_64-pc-linux-gnu -SettingsFile
MCM1_0174448_2270.txt -DatabaseFile dataset>
 ├─713517 ../../projects/www.worldcommunitygrid.
org/wcgrid_opn1_autodock_7.17_x86_64-pc-linux-gnu -jobs
OPN1_0040871_00826.job -input OPN1_0040871_008>
 ├─713657 ../../projects/www.worldcommunitygrid.
org/wcgrid_mcm1_map_7.43_x86_64-pc-linux-gnu -SettingsFile
MCM1_0174525_7317.txt -DatabaseFile dataset>
 ├─713672 ../../projects/www.worldcommunitygrid.
org/wcgrid_mcm1_map_7.43_x86_64-pc-linux-gnu -SettingsFile
MCM1_0174529_1537.txt -DatabaseFile dataset>
 └─714586 ../../projects/www.worldcommunitygrid.
org/wcgrid_opn1_autodock_7.17_x86_64-pc-linux-gnu -jobs
OPN1_0040864_01640.job -input OPN1_0040864_016>

Apr 14 19:57:16 yorktown.both.org boinc[1389]: 14-
Apr-2021 19:57:16 [World Community Grid] Finished upload of
OPN1_0040707_05063_0_r181439640_0

Chapter 16 Why I Support the systemd Plan to Take Over the World

415

Apr 14 20:57:36 yorktown.both.org boinc[1389]: 14-Apr-2021
20:57:36 [World Community Grid] Sending scheduler request: To
report completed tasks.
Apr 14 20:57:36 yorktown.both.org boinc[1389]: 14-Apr-2021
20:57:36 [World Community Grid] Reporting 1 completed tasks
Apr 14 20:57:36 yorktown.both.org boinc[1389]: 14-Apr-2021
20:57:36 [World Community Grid] Not requesting tasks: don't
need (job cache full)
Apr 14 20:57:38 yorktown.both.org boinc[1389]: 14-Apr-2021
20:57:38 [World Community Grid] Scheduler request completed
Apr 14 20:57:38 yorktown.both.org boinc[1389]: 14-Apr-2021
20:57:38 [World Community Grid] Project requested delay of
121 seconds
Apr 14 21:38:03 yorktown.both.org boinc[1389]: 14-Apr-2021
21:38:03 [World Community Grid] Computation for task
MCM1_0174482_7657_1 finished
Apr 14 21:38:03 yorktown.both.org boinc[1389]: 14-
Apr-2021 21:38:03 [World Community Grid] Starting task
OPN1_0040864_01640_0
Apr 14 21:38:05 yorktown.both.org boinc[1389]: 14-
Apr-2021 21:38:05 [World Community Grid] Started upload of
MCM1_0174482_7657_1_r1768267288_0
Apr 14 21:38:09 yorktown.both.org boinc[1389]: 14-
Apr-2021 21:38:09 [World Community Grid] Finished upload of
MCM1_0174482_7657_1_r1768267288_0
[root@yorktown ~]#

The key is that the BOINC client runs as a daemon and should be

managed by the init system. All software that runs as a daemon should

be managed by systemd. In fact, even software that still provides SystemV

start scripts is managed by systemd.

Chapter 16 Why I Support the systemd Plan to Take Over the World

416

�systemd Standardizes Configuration
One of the problems I have had over the years is that, even though “Linux

is Linux”, not all distributions store their configuration files in the same

places or use the same names or even formats. With the huge numbers of

Linux hosts in the world, that lack of standardization is a problem. I have

also encountered horrible config files and SystemV startup files created

by developers trying to jump on the Linux bandwagon and who have no

idea how to create software for Linux—and especially services that must be

included in the Linux startup sequence.

The systemd unit files standardize configuration and enforce a startup

methodology and organization that provides a level of safety from poorly

written SystemV start scripts. They also provide tools that the SysAdmin

can use to monitor and manage services.

In April 2011, Lennart Poettering wrote a short blog post describing

standard names and locations4 for common critical systemd configuration

files. This standardization makes the SysAdmin’s job easier. It also makes

it easier to automate administrative tasks in environments with multiple

Linux distributions. Developers also benefit from this standardization.

�Sometimes, the Pain
Any undertaking as massive as replacing and extending an entire init

system will cause some level of pain during the transition. I don’t mind

learning the new commands and how to create configuration files of

various types, such as targets, timers, and so on. It does take some work,

but I think the results are well worth the effort.

4 Poettering, Lennart, Blog entry, The New Configuration Files, http://0pointer.
de/blog/projects/the-new-configuration-files

Chapter 16 Why I Support the systemd Plan to Take Over the World

http://0pointer.de/blog/projects/the-new-configuration-files
http://0pointer.de/blog/projects/the-new-configuration-files

417

New configuration files and changes in the subsystems that own

and manage them can also seem daunting at first. Not to mention that

sometimes new tools such as systemd-resolved can break the way things

have worked for a long time, as I point out in my article, “Resolve systemd-

resolved name-service failures with Ansible.”5

Tools like scripts and Ansible can mitigate the pain while we wait for

changes that resolve the pain.

�Five Reasons SysAdmins Love systemd

Author’s Note T his section was originally published as an article
on Opensource.com,6 by Seth Kenlon, my technical reviewer for this
book. It makes a great finale to this book, and it’s included here with
his permission.

systemd’s speed and ease make it a popular way to manage modern
Linux systems.

As systems administrators know, there’s a lot happening on modern

computers. Applications run in the background, automated events wait to

be triggered at a certain time, log files are written, and status reports are

delivered. Traditionally, these disparate processes have been managed

and monitored with a collection of Unix tools to great effect and with great

efficiency. However, modern computers are diverse, with local services

running alongside containerized applications, easy access to clouds and

the clusters they run on, real-time processes, and more data to process

than ever.

5 Both, David, “Resolve systemd-resolved name-service failures with Ansible,”
https://www.both.org/?p=3889
6 Opensource.com is no longer active and no new articles have been published
there since Red Hat abandoned it in early 2023.

Chapter 16 Why I Support the systemd Plan to Take Over the World

https://www.both.org/?p=3889

418

Having a unified method of managing them is an expectation for users

and a useful luxury for busy SysAdmins. For this nontrivial task, the system

daemon, or systemd, was developed and quickly adopted by all major

Linux distributions.

Of course, systemd isn’t the only way to manage a Linux system. There

are many alternative init systems, including sysvinit, OpenRC, runit, s6,

and even BusyBox, but systemd treats Linux as a unified dataset, meant

to be manipulated and queried consistently with robust tools. For a busy

systems administrator and many users, the speed and ease of systemd is

an important feature. Here are five reasons why.

�Boot Management
Booting a Linux computer can be a surprisingly rare event, if you want it

to be. Certainly in the server world, uptimes are often counted in years

rather than months or weeks. Laptops and desktops tend to be shut down

and booted pretty frequently, although even these are as likely to be

suspended or hibernated as they are to be shut down. Either way, the time

since the most recent boot event can serve as a sort of session manager for

a computer health check. It’s a useful way to limit what data you look at

when monitoring your system or diagnosing problems.

In the likely event that you can’t remember the last time you booted

your computer, you can list boot sessions with systemd’s logging tool,

journalctl:

$ journalctl --list-boots
-42 7fe7c3... Fri 2020-12-04 05:13:59 - Wed 2020-12-16 16:01:23
-41 332e99... Wed 2020-12-16 20:07:39 - Fri 2020-12-18 22:08:13
[...]
-1 e0fe5f... Mon 2021-03-29 20:47:46 - Mon 2021-03-29 21:59:29
 0 37fbe4... Tue 2021-03-30 04:46:13 - Tue 2021-03-30 10:42:08

Chapter 16 Why I Support the systemd Plan to Take Over the World

419

The latest boot sessions appear at the bottom of the list, so you can

pipe the output to tail for just the latest boots.

The numbers on the left (42, 41, 1, and 0 in this example) are index

numbers for each boot session. In other words, to view logs for only a

specific boot session, you can use its index number as reference.

�Log Reviews
Looking at logs is an important method of extrapolating information

about your system. Logs provide a history of much of the activity your

computer engages in without your direct supervision. You can see when

services launched, when timed jobs ran, what services are running in the

background, which activities failed, and more. One of the most common

initial troubleshooting steps is to review logs, which is easy to do with

journalctl:

$ journalctl --pager-end

The --pager-end (or -e for short) option starts your view of the logs at

the end of the journalctl output, so you must scroll up to see events that

happened earlier.

systemd maintains a “catalog” of errors and messages filled with

records of errors, possible solutions, pointers to support forums, and

developer documentation. This can provide important context to a log

event, which can otherwise be a confusing blip in a sea of messages or,

worse, could go entirely unnoticed. To integrate error messages with

explanatory text, you can use the --catalog (or -x for short) option:

$ journalctl --pager-end --catalog

Chapter 16 Why I Support the systemd Plan to Take Over the World

420

To further limit the log output you need to wade through, you can

specify which boot session you want to see logs for. Because each boot

session is indexed, you can specify certain sessions with the --boot option

and view only the logs that apply to it:

$ journalctl --pager-end --catalog --boot 42

You can also see logs for a specific systemd unit. For instance, to

troubleshoot an issue with your secure shell (SSH) service, you can specify

--unit sshd to see only the logs that apply to the sshd daemon:

$ journalctl --pager-end \
--catalog --boot 42 \
--unit sshd

�Service Management
The first task for systemd is to boot your computer, and it generally does

that promptly, efficiently, and effectively. But the task that’s never finished

is service management. By design, systemd ensures that the services you

want to run do indeed start and continue running during your session.

This is nicely robust, because in theory even a crashed service can be

restarted without your intervention.

Your interface to help systemd manage services is the systemctl

command. With it, you can view the unit files that define a service:

$ systemctl cat sshd
/usr/lib/systemd/system/sshd.service
[Unit]
Description=OpenSSH server daemon
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.target
Wants=sshd-keygen.target

Chapter 16 Why I Support the systemd Plan to Take Over the World

421

[Service]
Type=notify
EnvironmentFile=-/etc/crypto-policies/back-ends/
opensshserver.config
EnvironmentFile=-/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO_POLICY
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

Most unit files exist in /usr/lib/systemd/system/, but, as with many

important configurations, you’re encouraged to modify them with local

changes. There’s an interface for that, too:

$ systemctl edit sshd

You can see whether a service is currently active:

$ systemctl is-active sshd
active
$ systemctl is-active foo
inactive

Similarly, you can see whether a service has failed with is-failed.

Starting and stopping services are nicely intuitive:

$ systemctl stop sshd
$ systemctl start sshd

Chapter 16 Why I Support the systemd Plan to Take Over the World

422

And enabling a service to start at boot time is simple:

$ systemctl enable sshd

Add the --now option to enable a service to start at boot time or to start

it for your current session.

�Timers
Long ago, when you wanted to automate a task on Linux, the canonical

tool for the job was cron. There’s still a place for the cron command, but

there are also some compelling alternatives. For instance, the anacron7

command is a versatile, cron-like system capable of running tasks that

otherwise would have been missed during downtime.

Scheduled events are little more than services activated at a specific

time, so systemd manages a cron-like function called timers.8 You can list

active timers:

$ systemctl list-timers
NEXT LEFT
Tue 2021-03-30 12:37:54 NZDT 16min left [...]
Wed 2021-03-31 00:00:00 NZDT 11h left [...]
Wed 2021-03-31 06:42:02 NZDT 18h left [...]

3 timers listed.
Pass --all to see loaded but inactive timers, too.

You can enable a timer the same way you enable a service:

$ systemctl enable myMonitor.timer

7 Both, David, How I use cron in Linux, https://www.both.org/?p=3685
8 Both, David, systemd — #7: Use systemd timers instead of cronjobs, https://www.
both.org/?p=3862

Chapter 16 Why I Support the systemd Plan to Take Over the World

https://www.both.org/?p=3685
https://www.both.org/?p=3862
https://www.both.org/?p=3862

423

�Targets
Targets are the final major component of the systemd matrix. A target is

defined by a unit file, the same as services and timers. Targets can also be

started and enabled in the same way. What makes targets unique is that

they group other unit files in an arbitrarily significant way. For instance,

you might want to boot to a text console instead of a graphical desktop, so

the multi-user target exists. However, the multi-user target is only the

graphical target without the desktop unit files as dependencies.

In short, targets are an easy way for you to collect services, timers,

and even other targets together to represent an intended state for your

machine.

In fact, within systemd, a reboot, a power-off, or a shutdown action is

just another target.

You can list all available targets using the list-unit-files option,

constraining it with the --type option set to target:

$ systemctl list-unit-files --type target

�Taking Control with systemd
Modern Linux uses systemd for service management and log

introspection. It provides everything from personal Linux systems

to enterprise servers with a modern mechanism for monitoring and

easy maintenance. The more you use it, the more systemd becomes

comfortably predictable and intuitive, and the more you discover how

disparate parts of your system are interconnected.

To get better acquainted with systemd, you must use it. And to get

comfortable with using it, download our cheat sheet9 and refer to it often.

9 Kenlon, Seth, Linux systemd cheat sheet, https://opensource.com/downloads/
linux-systemd-cheat-sheet

Chapter 16 Why I Support the systemd Plan to Take Over the World

https://opensource.com/downloads/linux-systemd-cheat-sheet
https://opensource.com/downloads/linux-systemd-cheat-sheet

424

�Final Exercise
This is the last exercise in this book, and it’s a bit different because there’s

no list of tasks or questions. It’s a simple suggestion that you spend time

exploring systemd and its many facets and learn as much more about it as

you can.

Follow your curiosity wherever it leads. Create your own experiments

and use them to guide your explorations.

Chapter 16 Why I Support the systemd Plan to Take Over the World

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Learning to Love systemd
	Objectives
	Overview
	Linux Boot
	systemd Controversy
	Why I Prefer SystemV
	Why I Prefer systemd
	The Real Issue
	Replacing SystemV

	systemd Tasks
	More Data for the Admin
	systemd Standardizes Configuration
	Architecture
	systemd As PID 1
	Preparation
	Summary
	Exercises

	Chapter 2: Linux Boot and Startup
	Objectives
	Overview
	Hardware Boot
	The Boot Sector
	The MBR
	The GPT
	Functional Impact MBR vs. GPT

	Linux Boot
	GRUB
	The GUID Partition Table
	The Kernel

	Linux Startup
	systemd

	Graphical Login
	Display Manager
	Window Manager
	How Do I Deal with All These Choices?

	Console Login
	Virtual Consoles
	Using Virtual Consoles

	How Logins Work
	CLI Login Screen
	GUI Login Screen

	Summary
	Exercises

	Chapter 3: Understanding Linux Startup with systemd
	Objectives
	Overview
	Exploring Linux Startup with systemd
	Targets
	Exploring the Current Target
	Switching to a Different Target
	Changing the Default Target

	Summary
	Exercises

	Chapter 4: How to Manage Startup Using systemd
	Objectives
	Overview
	Preparation
	The Program
	The Service Unit
	Creating the Service Unit
	Start the Service
	Reboot—Finally
	Changing the Sequence
	Ensure a Service Starts After the Network Is Running

	Summary
	Exercises

	Chapter 5: Manage systemd Units with systemctl
	Objectives
	Overview
	Preparation
	systemd Suite
	Practical Structure
	systemctl
	Service Units
	Mounts the Old Way
	Creating a Mount Unit

	Summary
	Exercises

	Chapter 6: Control Your Computer Time and Date with systemd
	Objectives
	Overview
	Why Time Is Important to Computers
	Multiple Times
	NTP
	The NTP Server Hierarchy
	NTP Implementation Options
	NTP Client Configuration
	NTP Server Pools

	Chrony
	Using chronyc from the Command Line
	Chronyc As an Interactive Tool

	systemd-timesync
	Configure systemd-timesyncd
	Start timesyncd
	Set the Hardware Clock
	Do You Really Need RTC?

	Summary
	Exercises

	Chapter 7: Analyzing systemd Calendar and Time Spans
	Objectives
	Overview
	Definitions
	Absolute Timestamp
	Accuracy
	Calendar Event
	Time Span
	Calendar Event Expressions
	Exploring systemd Time Syntax
	Calendar Events
	Timestamps
	Time Spans

	Summary
	Exercises

	Chapter 8: Using systemd Timers
	Objectives
	Overview
	System Maintenance Timers
	Creating a Timer
	Timer Accuracy
	Timer Types
	OnCalendar Event Expressions
	Superfluous Timers
	Summary
	Exercises

	Chapter 9: Using systemd Journals
	Objectives
	Overview
	The Journal
	The systemd Journal Service
	Configuration
	About that Binary Data Format…
	The journalctl Command
	Commonly Used Options
	Other Interesting Options
	Journal Files
	Adding Your Own Journal Entries

	Journal Storage Usage
	Journal File Rotation

	Summary
	Exercises

	Chapter 10: Managing the Firewall with firewalld
	Objectives
	Introduction
	Ports

	Firewall Rules
	Firewall Tools
	Block (Almost) Everything
	Crunchy on the Outside
	firewalld
	firewalld Zones
	Exploring the Firewall
	Adding a New Zone
	Zones in a Complex Environment
	Adding and Deleting Services
	Adding a Service for a Specific Period of Time
	Wireless

	Using --reload
	Zone Files
	Minimum Usable Firewall Configuration

	Panic Mode
	firewall-config GUI

	nftables
	Outbound Blocking
	Fail2Ban
	Cleanup
	Summary
	Exercises

	Chapter 11: Resource Management with cgroups
	Objectives
	Introduction
	Using cgroups for Process Management
	Exploring the Cgroup Hierarchy
	Managing cgroups with systemd
	Summary
	Exercises

	Chapter 12: Using systemd-resolved Name Service
	Objectives
	Introduction
	How a Name Search Works
	resolv.conf
	Historical Usage
	Current Usage

	Name Service Strategies
	The /etc/hosts File
	mDNS
	How It Works
	The Details
	mDNS Performance

	nss-DNS
	Top-Level Configuration
	NSS and NSSwitch

	systemd-resolved.service

	Fedora Name Resolution Fails When Using systemd-resolved
	Determining the Problem
	Resolving the Problem
	Concluding Thoughts About nsswitch

	Summary
	Exercises

	Chapter 13: Replacing rc.local in systemd
	Objectives
	Introduction
	Boot vs. Startup

	Local Startup
	Create the Executable File
	Create the systemd Service
	Enable the New Service
	Revise mystartup.sh
	Final Test

	A Temporary Option
	Cleanup
	Summary
	Exercises

	Chapter 14: Getting More Out of the Journal
	Objectives
	Introduction
	Options to Narrow Search Results
	A Troubleshooting Example
	Determining the Problem
	First Solution
	The Better Solution

	Summary
	Exercises

	Chapter 15: Analyzing systemd Startup and Configuration
	Objectives
	Overview
	Linux Startup
	Basic Analysis
	The Blame Game
	Critical Chain
	System State
	Analytic Graphs
	Conditionals

	Listing Configuration Files
	Unit File Verification
	Security
	Summary
	Exercises

	Chapter 16: Why I Support the systemd Plan to Take Over the World
	Introduction
	More Data for the Admin
	systemd Standardizes Configuration
	Sometimes, the Pain
	Five Reasons SysAdmins Love systemd
	Boot Management
	Log Reviews
	Service Management
	Timers
	Targets
	Taking Control with systemd

	Final Exercise

